This book explores the underlying principles of materials under extreme pressures, providing a toolbox for assessing/predicting their behaviour in real-world applications.
The goal of the Special Issue “Brittle Materials in Mechanical Extremes” is to spark a discussion of the analogies and the differences between different brittle materials, such as ceramics and concrete. The contributions to the Issue span from construction materials (asphalt and concrete) to structural ceramics to ice. Data reported in the Issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offers an unconventional viewpoint on the behavior of such materials. While it is by no means exhaustive, this Special Issue paves the road for the fundamental understanding and further development of materials.
This book focuses on the behaviour of nanomaterials under extreme conditions of high temperature, irradiation by electron/ions and neutrons as well as in mechanical and corrosion extremes. The theoretical approaches and modeling are presented with numerous results of experimental studies. Different processing methods of extreme-tolerant nanomaterials are described. Many application examples from high-temperature technique, nuclear reactors of new generations, aerospace industry, chemical and general engineering, sensor facility, power engineering, electronics, catalysis and medical preparations are also contained. Some unresolved problems are emphasized.
This book presents the select proceedings of the Indo-Korean workshop on Multi Functional Materials for Extreme Loading, 2021. The book mainly focuses on the very important emerging area of response to extreme loading of composites as well as other materials involving characterization studies, failure mechanisms conditions under quasi static to high strain rates, impact loads, blast loads, crash analysis, and other thermal and fatigue loads. The book also includes other important areas related to special materials and techniques such as 3D printing, nano-composites, multifunctional materials, and high temperature materials. The contents of this book are useful for beginners, industrial designers, academic researchers, and graduate students.
This book aims at identifying novel advanced materials of extreme wetting properties (MEWP) for practical, industrial applications. The state-of-the art superhdyrophobic, superhdyrophilic, superoleophobic, superoleophilic, and superomniphobic materials, that are MEWP, with respect to their technological and emerging industrial applications are discussed in this book. MEWP offer new perspectives providing numerous potential applications. Hence, these advanced MEWP have the potential to lead to a new generation of products and devices with unique properties and functionalities. Despite the large scientific progress on MEWP there are still some obstacles which have to be solved to make these materials available for real life applications. Recent advances on the production strategies, including methods and materials, of MEWP has shown that the durability and sustainability obstacles can be addressed thus offering the possibility for industrial exploitation. MEWP with wettabilities ranging from superhydrophobicity to superhydrophilicity provide promising avenues for several and important applications, which sometimes are crucial for the humankind. This book also discusses a large variety of other potential applications of MEWP, thus providing new ideas to scientists and engineers for further exploitation of these novel materials. Moreover, the whole spectrum of the recent technological developments, current research progress, future outlook, and the modern trends in the applications of MEWP are discussed in a consistent approach.
This book addresses issues pertinent to mechanics and stress generation, especially in recent advanced cases of technology developments, spanning from micrometer interconnects in solar photovoltaics (PV), next-gen energy storage devices to multilayers of nano-scale composites enabling novel stretchable/flexible conductor technologies. In these cases, the mechanics of materials have been pushed to the extreme edges of human knowledge to enable cutting-edge, unprecedented functionalities and technological innovations. Synchrotron X-ray diffraction, in situ small-scale mechanical testing combined with physics-based computational modeling/simulation, has been widely used approaches to probe these mechanics of the materials at their extreme limits due to their recently discovered distinct advantages. The techniques discussed in this manuscript are highlights specially curated from the broad body of work recently reported in the literature, especially ones that the author had led the pursuits at the frontier himself. Extreme stress generation in these advanced material leads to often new failure modes, and hence, the reliability of the final product is directly affected. From the recent topics and various advanced case studies covered in this book, the reader gets an updated knowledge of how new mechanics can and has been applied in Design-for-Reliability (DfR) for some of the latest technological innovations known in our modern world. Further, this also helps in building better designs, which may avoid the pitfalls of the current practiced trends.
This book presents recent and cutting edge advances in our understanding of key aspects of the response of materials under extreme loads that take place during high velocity impact and penetration. The focus of the content is on the numerous challenges associated with characterization and modeling of complex interactions that occur during these highly dynamic events. The following specific topics, among others, are addressed: characterization of material behavior under extreme loadings (estimate of damage, effects related to moisture contents, large pressures, large strain rates, etc.); measurement of microstructural changes associated with damage and mesoscopic scale modeling; macroscopic modeling, using the framework of the theory of viscoplasticity and damage; modeling and simulation of localization, cracking, and dynamic fragmentation of materials; application to penetration mechanics and trajectory instabilities. The book gathers together selected papers based on work presented as invited lectures at the 2nd US-France symposium held on 28-30 May 2008 in Rocamadour, France. The conference was organized by Eric Buzaud (DGA, Centre d'Études de Gramat) under the auspices of the International Center for Applied Computational Mechanics (ICACM).
Research in the area of nanoindentation has gained significant momentum in recent years, but there are very few books currently available which can educate researchers on the application aspects of this technique in various areas of materials science. Applied Nanoindentation in Advanced Materials addresses this need and is a comprehensive, self-contained reference covering applied aspects of nanoindentation in advanced materials. With contributions from leading researchers in the field, this book is divided into three parts. Part one covers innovations and analysis, and parts two and three examine the application and evaluation of soft and ceramic-like materials respectively. Key features: A one stop solution for scholars and researchers to learn applied aspects of nanoindentation Contains contributions from leading researchers in the field Includes the analysis of key properties that can be studied using the nanoindentation technique Covers recent innovations Includes worked examples Applied Nanoindentation in Advanced Materials is an ideal reference for researchers and practitioners working in the areas of nanotechnology and nanomechanics, and is also a useful source of information for graduate students in mechanical and materials engineering, and chemistry. This book also contains a wealth of information for scientists and engineers interested in mathematical modelling and simulations related to nanoindentation testing and analysis.
Materials Under Extreme Conditions: Recent Trends and Future Prospects analyzes the chemical transformation and decomposition of materials exposed to extreme conditions, such as high temperature, high pressure, hostile chemical environments, high radiation fields, high vacuum, high magnetic and electric fields, wear and abrasion related to chemical bonding, special crystallographic features, and microstructures. The materials covered in this work encompass oxides, non-oxides, alloys and intermetallics, glasses, and carbon-based materials. The book is written for researchers in academia and industry, and technologists in chemical engineering, materials chemistry, chemistry, and condensed matter physics. - Describes and analyzes the chemical transformation and decomposition of a wide range of materials exposed to extreme conditions - Brings together information currently scattered across the Internet or incoherently dispersed amongst journals and proceedings - Presents chapters on phenomena, materials synthesis, and processing, characterization and properties, and applications - Written by established researchers in the field