Materials and the Environment

Materials and the Environment

Author: M. F. Ashby

Publisher: Butterworth-Heinemann

Published: 2012-03-28

Total Pages: 629

ISBN-13: 0123859719

DOWNLOAD EBOOK

Addressing the growing global concern for sustainable engineering, this title is devoted exclusively to the environmental aspects of materials.


Materials, Energy and Environment Engineering

Materials, Energy and Environment Engineering

Author: Raj Mohan B.

Publisher: Springer

Published: 2017-01-26

Total Pages: 307

ISBN-13: 9811026750

DOWNLOAD EBOOK

This edited volume comprises the proceedings of ICACE-2015. In the recent past Chemical Engineering as a discipline has been diversifying into several frontier areas and this volume addresses the advances in core Chemical Engineering as well as allied fields. The contents of this volume focus on energy and environmental applications of chemical engineering research and on materials science aspects of chemical engineering. This book will be useful to researchers, students, and professionals, particularly those working on interdisciplinary applications of Chemical Engineering problems.


The Physical Chemistry of Materials

The Physical Chemistry of Materials

Author: Rolando Roque-Malherbe

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 524

ISBN-13: 1420082736

DOWNLOAD EBOOK

In recent years, the area dealing with the physical chemistry of materials has become an emerging discipline in materials science that emphasizes the study of materials for chemical, sustainable energy, and pollution abatement applications. Written by an active researcher in this field, Physical Chemistry of Materials: Energy and Environmental Appl


Environmental Engineering for the 21st Century

Environmental Engineering for the 21st Century

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-03-08

Total Pages: 125

ISBN-13: 0309476550

DOWNLOAD EBOOK

Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.


Sustainable Materials and Green Processing for Energy Conversion

Sustainable Materials and Green Processing for Energy Conversion

Author: Kuan Yew Cheong

Publisher: Elsevier

Published: 2021-10-01

Total Pages: 506

ISBN-13: 0128230703

DOWNLOAD EBOOK

Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. - Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices - Focuses on designing of materials through green-processing concepts - Highlights challenges and opportunities in green processing of renewable materials for energy devices


Nanotechnology for Energy and Environmental Engineering

Nanotechnology for Energy and Environmental Engineering

Author: Lalita Ledwani

Publisher: Springer Nature

Published: 2020-03-12

Total Pages: 605

ISBN-13: 303033774X

DOWNLOAD EBOOK

This book examines the potential applications of nanoscience and nanotechnology to promote eco-friendly processes and techniques for energy and environment sustainability. Covering various aspects of both the synthesis and applications of nanoparticles and nanofluids for energy and environmental engineering, its goal is to promote eco-friendly processes and techniques. Accordingly, the book elaborates on the development of reliable, economical, eco-friendly processes through advanced nanoscience and technological research and innovations. Gathering contributions by researchers actively engaged in various domains of nanoscience and technology, it addresses topics such as nanoparticle synthesis (both top-down and bottom-up approaches); applications of nanomaterials, nanosensors and plasma discharge in pollution control; environmental monitoring; agriculture; energy recovery; production enhancement; energy conservation and storage; surface modification of materials for energy storage; fuel cells; pollution mitigation; and CO2 capture and sequestration. Given its scope, the book will be of interest to academics and researchers whose work involves nanotechnology or nanomaterials, especially as applied to energy and/or environmental sustainability engineering. Graduate students in the same areas will also find it a valuable resource.


Sustainable Environmental Engineering

Sustainable Environmental Engineering

Author: Walter Z. Tang

Publisher: John Wiley & Sons

Published: 2018-08-01

Total Pages: 1073

ISBN-13: 1119085586

DOWNLOAD EBOOK

The important resource that explores the twelve design principles of sustainable environmental engineering Sustainable Environmental Engineering (SEE) is to research, design, and build Environmental Engineering Infrastructure System (EEIS) in harmony with nature using life cycle cost analysis and benefit analysis and life cycle assessment and to protect human health and environments at minimal cost. The foundations of the SEE are the twelve design principles (TDPs) with three specific rules for each principle. The TDPs attempt to transform how environmental engineering could be taught by prioritizing six design hierarchies through six different dimensions. Six design hierarchies are prevention, recovery, separation, treatment, remediation, and optimization. Six dimensions are integrated system, material economy, reliability on spatial scale, resiliency on temporal scale, and cost effectiveness. In addition, the authors, two experts in the field, introduce major computer packages that are useful to solve real environmental engineering design problems. The text presents how specific environmental engineering issues could be identified and prioritized under climate change through quantification of air, water, and soil quality indexes. For water pollution control, eight innovative technologies which are critical in the paradigm shift from the conventional environmental engineering design to water resource recovery facility (WRRF) are examined in detail. These new processes include UV disinfection, membrane separation technologies, Anammox, membrane biological reactor, struvite precipitation, Fenton process, photocatalytic oxidation of organic pollutants, as well as green infrastructure. Computer tools are provided to facilitate life cycle cost and benefit analysis of WRRF. This important resource: • Includes statistical analysis of engineering design parameters using Statistical Package for the Social Sciences (SPSS) • Presents Monte Carlos simulation using Crystal ball to quantify uncertainty and sensitivity of design parameters • Contains design methods of new energy, materials, processes, products, and system to achieve energy positive WRRF that are illustrated with Matlab • Provides information on life cycle costs in terms of capital and operation for different processes using MatLab Written for senior or graduates in environmental or chemical engineering, Sustainable Environmental Engineering defines and illustrates the TDPs of SEE. Undergraduate, graduate, and engineers should find the computer codes are useful in their EEIS design. The exercise at the end of each chapter encourages students to identify EEI engineering problems in their own city and find creative solutions by applying the TDPs. For more information, please visit www.tang.fiu.edu.


Energy Flows, Material Cycles and Global Development

Energy Flows, Material Cycles and Global Development

Author: Georg Schaub

Publisher: Springer

Published: 2016-07-06

Total Pages: 0

ISBN-13: 9783319294933

DOWNLOAD EBOOK

This book starts by discussing the global flows of energy and materials and changes caused by human activities. It then examines the limitations of anthropogenic energy and material flows and the consequences for the development of human society. Different scenarios for lifestyle patterns are correlated with the future development of the global energy supply and climate. As it provides a process engineering approach to the Earth system and global development, readers should have a basic understanding of mathematics, physics, chemistry and biology. This second edition also reflects new developments since the original publication: increases in anthropogenic energy and material flows due to significant economic growth in certain parts of the world, and recent changes in energy policy and technological development countries, such as Germany (the Energiewende, or transition to renewable energy sources), where goals have been defined and measures initiated for a future energy supply without fossil and nuclear sources. As such, it offers a valuable resource for undergraduate and graduate students as well as practicing experts alike.


Energy, the Environment, and Sustainability

Energy, the Environment, and Sustainability

Author: Efstathios E. Michaelides

Publisher: CRC Press

Published: 2018-04-27

Total Pages: 484

ISBN-13: 1351710141

DOWNLOAD EBOOK

Energy and the Environment explains in simple terms what the energy demand is at the present, what the environmental effects of energy use are, and what can be accomplished to alleviate the environmental effects of energy use and ensure adequate energy supply. Though technical in approach, the text uses simple explanations of engineering processes and systems and algebra-based math to be comprehensible to students in a range of disciplines. Schematic diagrams, quantitative examples, and numerous problems will help students make quantitative calculations. This will assist them in comprehending the complexity of the energy-environment balance, and to analyze and evaluate proposed solutions.


Earth Science and Applications from Space

Earth Science and Applications from Space

Author: National Research Council

Publisher: National Academies Press

Published: 2007-10-01

Total Pages: 460

ISBN-13: 9780309103879

DOWNLOAD EBOOK

Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.