Massively Parallel Fast Elliptic Equation Solver for Three Dimensional Hydrodynamics and Relativity

Massively Parallel Fast Elliptic Equation Solver for Three Dimensional Hydrodynamics and Relativity

Author:

Publisher:

Published: 1995

Total Pages: 17

ISBN-13:

DOWNLOAD EBOOK

Through the work proposed in this document we expect to advance the forefront of large scale computational efforts on massively parallel distributed-memory multiprocessors. We will develop tools for effective conversion to a parallel implementation of sequential numerical methods used to solve large systems of partial differential equations. The research supported by this work will involve conversion of a program which does state of the art modeling of multi-dimensional hydrodynamics, general relativity and particle transport in energetic astrophysical environments. The proposed parallel algorithm development, particularly the study and development of fast elliptic equation solvers, could significantly benefit this program and other applications involving solutions to systems of differential equations. We shall develop a data communication manager for distributed memory computers as an aid in program conversions to a parallel environment and implement it in the three dimensional relativistic hydrodynamics program discussed below; develop a concurrent system/concurrent subgrid multigrid method. Currently, five systems are approximated sequentially using multigrid successive overrelaxation. Results from an iteration cycle of one multigrid system are used in following multigrid systems iterations. We shall develop a multigrid algorithm for simultaneous computation of the sets of equations. In addition, we shall implement a method for concurrent processing of the subgrids in each of the multigrid computations. The conditions for convergence of the method will be examined. We'll compare this technique to other parallel multigrid techniques, such as distributed data/sequential subgrids and the Parallel Superconvergent Multigrid of Frederickson and McBryan. We expect the results of these studies to offer insight and tools both for the selection of new algorithms as well as for conversion of existing large codes for massively parallel architectures.


Energy Research Abstracts

Energy Research Abstracts

Author:

Publisher:

Published: 1995

Total Pages: 870

ISBN-13:

DOWNLOAD EBOOK

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.


Fast Integral Equation Solver for Variable Coefficient Elliptic PDEs in Complex Geometries

Fast Integral Equation Solver for Variable Coefficient Elliptic PDEs in Complex Geometries

Author: Dhairya Malhotra

Publisher:

Published: 2017

Total Pages: 286

ISBN-13:

DOWNLOAD EBOOK

This dissertation presents new numerical algorithms and related software for the numerical solution of elliptic boundary value problems with variable coefficients on certain classes of geometries. The target applications are problems in electrostatics, fluid mechanics, low-frequency electromagnetic and acoustic scattering. We present discretizations based on integral equation formulations which are founded in potential theory and Green's functions. Advantages of our methods include high-order discretization, optimal algorithmic complexity, mesh-independent convergence rate, high-performance and parallel scalability. First, we present a parallel software framework based on kernel independent fast multipole method (FMM) for computing particle and volume potentials in 3D. Our software is applicable to a wide range of elliptic problems such as Poisson, Stokes and low-frequency Helmholtz. It includes new parallel algorithms and performance optimizations which make our volume FMM one of the fastest constant-coefficient elliptic PDE solver on cubic domains. We show that our method is orders of magnitude faster than other N-body codes and PDE solvers. We have scaled our method to half-trillion unknowns on 229K CPU cores. Second, we develop a high-order, adaptive and scalable solver for volume integral equation (VIE) formulations of variable coefficient elliptic PDEs on cubic domains. We use our volume FMM to compute integrals and use GMRES to solve the discretized linear system. We apply our method to compute incompressible Stokes flow in porous media geometries using a penalty function to enforce no-slip boundary conditions on the solid walls. In our largest run, we achieved 0.66 PFLOP/s on 2K compute nodes of the Stampede system (TACC). Third, we develop novel VIE formulations for problems on geometries that can be smoothly mapped to a cube. We convert problems on non-regular geometries to variable coefficient problems on cubic domains which are then solved efficiently using our volume FMM and GMRES. We show that our solver converges quickly even for highly irregular geometries and that the convergence rates are independent of mesh refinement. Fourth, we present a parallel boundary integral equation solver for simulating the flow of concentrated vesicle suspensions in 3D. Such simulations provide useful insights on the dynamics of blood flow and other complex fluids. We present new algorithmic improvements and performance optimizations which allow us to efficiently simulate highly concentrated vesicle suspensions in parallel.


Relativistic Hydrodynamics

Relativistic Hydrodynamics

Author: Luciano Rezzolla

Publisher: OUP Oxford

Published: 2013-09-26

Total Pages: 752

ISBN-13: 0191509914

DOWNLOAD EBOOK

Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solution of the equations, and over to the applications in modern physics and astrophysics. Numerous figures, diagrams, and a variety of exercises aid the material in the book. The most obvious applications of this work range from astrophysics (black holes, neutron stars, gamma-ray bursts, and active galaxies) to cosmology (early-universe hydrodynamics and phase transitions) and particle physics (heavy-ion collisions). It is often said that fluids are either seen as solutions of partial differential equations or as "wet". Fluids in this book are definitely wet, but the mathematical beauty of differential equations is not washed out.


3+1 Formalism in General Relativity

3+1 Formalism in General Relativity

Author: Éric Gourgoulhon

Publisher: Springer

Published: 2012-02-27

Total Pages: 304

ISBN-13: 3642245250

DOWNLOAD EBOOK

This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.


Introduction to 3+1 Numerical Relativity

Introduction to 3+1 Numerical Relativity

Author: Miguel Alcubierre

Publisher: OUP Oxford

Published: 2008-04-10

Total Pages: 464

ISBN-13: 0191548294

DOWNLOAD EBOOK

This book introduces the modern field of 3+1 numerical relativity. The book has been written in a way as to be as self-contained as possible, and only assumes a basic knowledge of special relativity. Starting from a brief introduction to general relativity, it discusses the different concepts and tools necessary for the fully consistent numerical simulation of relativistic astrophysical systems, with strong and dynamical gravitational fields. Among the topics discussed in detail are the following: the initial data problem, hyperbolic reductions of the field equations, gauge conditions, the evolution of black hole space-times, relativistic hydrodynamics, gravitational wave extraction and numerical methods. There is also a final chapter with examples of some simple numerical space-times. The book is aimed at both graduate students and researchers in physics and astrophysics, and at those interested in relativistic astrophysics.


Relativistic Numerical Hydrodynamics

Relativistic Numerical Hydrodynamics

Author: James R. Wilson

Publisher: Cambridge University Press

Published: 2003-11-06

Total Pages: 234

ISBN-13: 9780521631556

DOWNLOAD EBOOK

Calculations of relativistic hydrodynamics are crucial to several areas of current research in the physics of supernovae and stellar collapse. This book provides an overview of the computational framework in which such calculations have been developed, with examples of applications to real physical systems. Beginning with the development of the equations and differencing schemes for special relativistic hydrodynamics, the book stresses the viability of the Euler-Lagrange approach to most astrophysical problems. It details aspects of solving the Einstein equations together with the fluid dynamics for various astrophysical systems in one, two and three dimensions.