Masonry Walls Strengthened with Fabric-Reinforced Cementitious Matrix Composite Subjected to In-Plane and Out-of-Plane Load

Masonry Walls Strengthened with Fabric-Reinforced Cementitious Matrix Composite Subjected to In-Plane and Out-of-Plane Load

Author: Saman Babaeidarabad

Publisher:

Published: 2013

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

A natural evolution of ferrocement has been the replacement of the reinforcing steel with new composite materials. Not only has this addressed the issue of possible durability problems associated with steel corrosion, but has opened the possibility of using thin-section cementitious products as repair materials. Fabric-reinforced cementitious matrix (FRCM) is a class of composite systems that has recently emerged as an alternative to traditional retrofitting methods like fiber-reinforced polymers (FRP), steel plate bonding, section enlargement, and external post-tensioning for repairing and strengthening reinforced concrete (RC) and masonry structures. FRCM consists of a reinforcing phase (fabrics) embedded into a matrix (cementitious mortar) adhered to concrete or masonry structural members and acts as supplemental, externally-bonded reinforcement. The goal of this dissertation is to experimentally and analytically investigate the effectiveness of FRCM to retrofit existing masonry structures; to evaluate the flexural and shear capacity of FRCM walls; to develop structural design procedures; and, to compare FRCM and FRP externally strengthened masonry walls. The dissertation is articulated in three studies. The first study (Study 1) investigates masonry walls externally strengthened with FRCM subjected to diagonal compression; the second (Study 2) focuses on FRCM strengthened walls subjected to out-of-plane loading; and the third (Study 3) presents a comparison between experimental results in this research program and other research programs using FRP systems when the normalized shear or flexural capacity is related to a calibrated reinforcement ratio.


Increasing the Blast Resistance of Concrete Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites

Increasing the Blast Resistance of Concrete Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites

Author: Ramon Perez Garcia

Publisher:

Published: 2021

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Unreinforced masonry (URM) walls are often used as load-bearing or infill walls in buildings in many countries. Such walls are also commonly found in existing and heritage buildings in Canada. URM walls are strong structural elements when subjected to axial loading, but are very vulnerable under out-of-plane loads. This type of loading may come from different sources , including seismic or blast events. When subjected to blast, wall elements experience large pressures on one of their faces due to the high pressure produced in the air when an explosion takes place. This wave of compressed air travels in a very short time and hits the wall causing immense stresses, which result in large shear and bending demands that may lead to wall failure, and the projection of debris at high velocities that can injure building occupants. This failure process is highly brittle due to the very low out-of-plane strength that characterize such walls. In the past years, many investigations have been carried out to enhance the structural behaviour of unreinforced masonry walls under out-of-plane loading. Different strengthening methods have been studied, which include the use of polyurea coatings, the application of advanced fiber-reinforced polymer (FRP) composites or the use of concrete overlays in combination with high performance reinforcement. Fabric-reinforced cementitious matrix (FRCM) is a new composite material that overcomes some of the drawbacks of FRP. This composite material consists of applying coatings which consist of one or more layers of cement-based mortar reinforced with a corresponding open mesh of dry fibers (fabric). This material has been studied as a strengthening technique to improve in-plane and out-of-plane capacity of existing URM walls as well as other structural elements, mostly under seismic actions. This thesis presents an experimental and analytical study which investigates the effectiveness of using FRCM composites to improve the out-of-plane resistance of URM walls when subjected to blast loading. As part of the experimental program, three large-scale URM masonry walls were constructed and strengthened with 1,2 and 3 layers of FRCM using unidirectional carbon fabrics. In all cases the specimens were built as load-bearing concrete masonry (CMU) walls. To increase shear resistance, two of the walls were also grouted with a flowable self-compacting concrete (SCC) mortar. Blast tests were conducted using the University of Ottawa Shock Tube and the results are compared with control walls tested in previous research at the University of Ottawa. The experimental results show that the FRCM retrofit significantly improved the blast performance of the URM load-bearing walls, allowing for increased blast capacity and improved control of displacements. The performance of the retrofit was found to be dependent on the number of retrofit layers. As part of the analytical research, Single Degree of Freedom (SDOF) analysis was carried out to predict the blast behaviour of the strengthened walls. This was done by computing wall flexural strength using plane sectional analysis and developing idealized resistance curves for use in the SDOF analysis. In general, the analysis procedure is found to produce reasonably accurate results for both the resistance functions and wall mid-height displacements under blast loading.


Blast Retrofit of Unreinforced Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites

Blast Retrofit of Unreinforced Masonry Walls Using Fabric Reinforced Cementitious Matrix (FRCM) Composites

Author: Hyunchul Jung

Publisher:

Published: 2020

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Unreinforced masonry (URM) walls are commonly found in existing and heritage buildings in Canada, either as infill or load-bearing walls. Such walls are vulnerable to sudden and brittle failure under blast loads due to their insufficient out-of-plane strength. The failure of such walls under blast pressures can also result in fragmentation and wall debris which can injure building occupants. Over the years, researchers have conducted experimental tests to evaluate the structural behaviour of unreinforced masonry walls under out-of-plane loading. Various strengthening methods have been proposed, including the use of concrete overlays, polyurea coatings and advanced fiber-reinforced polymer (FRP) composites. Fabric-reinforced cementitious matrix (FRCM) is an emerging material which can also be used to strengthen and remove the deficiencies in unreinforced masonry walls. This composite material consists of a sequence of one or multiple layers of cement-based mortar reinforced with an open mesh of dry fibers (fabric). This thesis presents an experimental and analytical study which investigates the effectiveness of using FRCM composites to improve the out-of-plane resistance of URM walls when subjected to blast loading. As part of the experimental program, two large-scale URM masonry walls were constructed and strengthened with the 3-plies of unidirectional carbon FRCM retrofit. The specimens included one infill concrete masonry (CMU) wall, and one load-bearing stone wall. The University of Ottawa Shock Tube was used to test the walls under gradually increasing blast pressures until failure, and the results were compared to those of control (un-retrofitted) walls tested in previous research. Overall, the FRCM strengthening method was found to be a promising retrofit technique to increase the blast resistance of unreinforced masonry walls. In particular, the retrofit was effective in increasing the out-of-plane strength, stiffness and ultimate blast capacity of the walls, while delaying brittle failure and reducing fragmentation. As part of the analytical research, Single Degree of Freedom (SDOF) analysis was performed to predict the blast behaviour of the stone load-bearing retrofit wall. This was done by computing wall flexural strength using Plane Section Analysis, and developing an idealized resistance curve for use in the SDOF analysis. Overall, the dynamic analysis results were found to be in reasonable agreement with the experimental maximum displacements.


Numerical Modeling of Masonry and Historical Structures

Numerical Modeling of Masonry and Historical Structures

Author: Bahman Ghiassi

Publisher: Woodhead Publishing

Published: 2019-06-15

Total Pages: 890

ISBN-13: 0081024401

DOWNLOAD EBOOK

Numerical Modeling of Masonry and Historical Structures: From Theory to Application provides detailed information on the theoretical background and practical guidelines for numerical modeling of unreinforced and reinforced (strengthened) masonry and historical structures. The book consists of four main sections, covering seismic vulnerability analysis of masonry and historical structures, numerical modeling of unreinforced masonry, numerical modeling of FRP-strengthened masonry, and numerical modeling of TRM-strengthened masonry. Each section reflects the theoretical background and current state-of-the art, providing practical guidelines for simulations and the use of input parameters. Covers important issues relating to advanced methodologies for the seismic vulnerability assessment of masonry and historical structures Focuses on modeling techniques used for the nonlinear analysis of unreinforced masonry and strengthened masonry structures Follows a theory to practice approach


10th International Conference on FRP Composites in Civil Engineering

10th International Conference on FRP Composites in Civil Engineering

Author: Alper Ilki

Publisher: Springer Nature

Published: 2021-11-26

Total Pages: 2516

ISBN-13: 3030881660

DOWNLOAD EBOOK

This volume highlights the latest advances, innovations, and applications in the field of FRP composites and structures, as presented by leading international researchers and engineers at the 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE), held in Istanbul, Turkey on December 8-10, 2021. It covers a diverse range of topics such as All FRP structures; Bond and interfacial stresses; Concrete-filled FRP tubular members; Concrete structures reinforced or pre-stressed with FRP; Confinement; Design issues/guidelines; Durability and long-term performance; Fire, impact and blast loading; FRP as internal reinforcement; Hybrid structures of FRP and other materials; Materials and products; Seismic retrofit of structures; Strengthening of concrete, steel, masonry and timber structures; and Testing. The contributions, which were selected by means of a rigorous international peer-review process, present a wealth of exciting ideas that will open novel research directions and foster multidisciplinary collaboration among different specialists.


Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls

Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls

Author: Koen Van Balen

Publisher: CRC Press

Published: 2016-11-03

Total Pages: 2968

ISBN-13: 1317206614

DOWNLOAD EBOOK

Structural Analysis of Historical Constructions. Anamnesis, diagnosis, therapy, controls contains the papers presented at the 10th International Conference on Structural Analysis of Historical Constructions (SAHC2016, Leuven, Belgium, 13-15 September 2016). The main theme of the book is “Anamnesis, Diagnosis, Therapy, Controls”, which emphasizes the importance of all steps of a restoration process in order to obtain a thorough understanding of the structural behaviour of built cultural heritage. The contributions cover every aspect of the structural analysis of historical constructions, such as material characterization, structural modelling, static and dynamic monitoring, non-destructive techniques for on-site investigation, seismic behaviour, rehabilitation, traditional and innovative repair techniques, and case studies. A special focus has been put on six specific themes: - Innovation and heritage - Preventive conservation - Computational strategies for heritage structures - Sustainable strengthening of masonry with composites - Values and sustainability, and - Subsoil interaction The knowledge, insights and ideas in Structural Analysis of Historical Constructions. Anamnesis, diagnosis, therapy, controls make this book of abstracts and the corresponding, digital full-colour conference proceedings containing the full papers must-have literature for researchers and practitioners involved in the structural analysis of historical constructions.


Strengthening of Reinforced Masonry Walls Subjected to Out-of-plane Pseudo-static Cyclic Load Using Advanced Composite

Strengthening of Reinforced Masonry Walls Subjected to Out-of-plane Pseudo-static Cyclic Load Using Advanced Composite

Author: Zuhair Al-Jaberi

Publisher:

Published: 2018

Total Pages: 264

ISBN-13:

DOWNLOAD EBOOK

"A number of researchers have conducted experimental tests on unreinforced masonry walls (URM) strengthened with advanced composite materials. Consequently, the strengthening design guidelines are limited in their scope to URM. This research aimed to investigate the behavior of reinforced masonry walls strengthened with advanced composite and subjected to out-of-plane pseudo-static cyclic load. Experimental and analytical studies were conducted to evaluate the performance of different techniques such as near surface mounted (NSM) and externally bonded (EB) fiber reinforced polymer (FRP) with epoxy resin, in addition to NSM with cementitious adhesive and fiber reinforced cementitious material (FRCM). The experimental part included three phases. In the first phase, a series of 42 reinforced masonry walls were tested to study the effectiveness of advanced composites in enhancing out-of-plane flexural capacity. The effect of long-term environmental exposure on strengthening systems was investigated in the second phase of study by testing 10 reinforced masonry walls. The third phase focused on bond behavior between the advanced composite and the concrete masonry unit at different temperatures; 56 specimens were used for this purpose. The results indicated that the non-arching strengthened reinforced masonry wall's behavior was significantly dependent on the type of fiber and fiber reinforcement ratio. The specimens strengthened with glass under combined environmental cycles exhibited an insignificant change in terms of ultimate strength as compared to laboratory conditioned specimens. The theoretical part included the investigation of bond reduction factors, seismic performance, and the nonlinear analysis of strengthened reinforced masonry wall using moment-curvature analysis. As a result of this study, the proposed model for predicting debonding strain and the moment-curvature relation presented an excellent prediction compared to the experimental results"--Abstract, page iv.


Building for the Future: Durable, Sustainable, Resilient

Building for the Future: Durable, Sustainable, Resilient

Author: Alper Ilki

Publisher: Springer Nature

Published: 2023-07-04

Total Pages: 1808

ISBN-13: 3031325117

DOWNLOAD EBOOK

This book presents the proceedings of the fib Symposium “Building for the future: Durable, Sustainable, Resilient”, held in Istanbul, Turkey, on 5–7 June 2023. The book covers topics such as concrete and innovative materials, structural performance and design, construction methods and management, and outstanding structures. fib (The International Federation for Structural Concrete) is a not-for-profit association whose mission is to develop at an international level the study of scientific and practical matters capable of advancing the technical, economic, aesthetic, and environmental performance of concrete construction.


Brick and Block Masonry - From Historical to Sustainable Masonry

Brick and Block Masonry - From Historical to Sustainable Masonry

Author: Jan Kubica

Publisher: CRC Press

Published: 2020-07-06

Total Pages: 1097

ISBN-13: 1000225577

DOWNLOAD EBOOK

Brick and Block Masonry - From Historical to Sustainable Masonry contains the keynote and semi-keynote lectures and all accepted regular papers presented online during the 17th International Brick and Block Masonry Conference IB2MaC (Kraków, Poland, July 5-8, 2020). Masonry is one of the oldest structures, with more than 6,000 years of history. However, it is still one of the most popular and traditional building materials, showing new and more attractive features and uses. Modern masonry, based on new and modified traditional materials and solutions, offers a higher quality of life, energy savings and more sustainable development. Hence, masonry became a more environmentally friendly building structure. Brick and Block Masonry - From Historical to Sustainable Masonry focuses on historical, current and new ideas related to masonry development, and will provide a very good platform for sharing knowledge and experiences, and for learning about new materials and technologies related to masonry structures. The book will be a valuable compendium of knowledge for researchers, representatives of industry and building management, for curators and conservators of monuments, and for students.