Adaptive Markov Control Processes

Adaptive Markov Control Processes

Author: Onesimo Hernandez-Lerma

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 160

ISBN-13: 1441987142

DOWNLOAD EBOOK

This book is concerned with a class of discrete-time stochastic control processes known as controlled Markov processes (CMP's), also known as Markov decision processes or Markov dynamic programs. Starting in the mid-1950swith Richard Bellman, many contributions to CMP's have been made, and applications to engineering, statistics and operations research, among other areas, have also been developed. The purpose of this book is to present some recent developments on the theory of adaptive CMP's, i. e. , CMP's that depend on unknown parameters. Thus at each decision time, the controller or decision-maker must estimate the true parameter values, and then adapt the control actions to the estimated values. We do not intend to describe all aspects of stochastic adaptive control; rather, the selection of material reflects our own research interests. The prerequisite for this book is a knowledgeof real analysis and prob ability theory at the level of, say, Ash (1972) or Royden (1968), but no previous knowledge of control or decision processes is required. The pre sentation, on the other hand, is meant to beself-contained,in the sensethat whenever a result from analysisor probability is used, it is usually stated in full and references are supplied for further discussion, if necessary. Several appendices are provided for this purpose. The material is divided into six chapters. Chapter 1 contains the basic definitions about the stochastic control problems we are interested in; a brief description of some applications is also provided.


Stochastic Systems

Stochastic Systems

Author: P. R. Kumar

Publisher: SIAM

Published: 2015-12-15

Total Pages: 371

ISBN-13: 1611974259

DOWNLOAD EBOOK

Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.


Mathematical Theory of Adaptive Control

Mathematical Theory of Adaptive Control

Author: Vladimir G. Sragovich

Publisher: World Scientific

Published: 2006

Total Pages: 490

ISBN-13: 9812701036

DOWNLOAD EBOOK

The theory of adaptive control is concerned with construction of strategies so that the controlled system behaves in a desirable way, without assuming the complete knowledge of the system. The models considered in this comprehensive book are of Markovian type. Both partial observation and partial information cases are analyzed. While the book focuses on discrete time models, continuous time ones are considered in the final chapter. The book provides a novel perspective by summarizing results on adaptive control obtained in the Soviet Union, which are not well known in the West. Comments on the interplay between the Russian and Western methods are also included.


Markov Processes and Controlled Markov Chains

Markov Processes and Controlled Markov Chains

Author: Zhenting Hou

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 501

ISBN-13: 146130265X

DOWNLOAD EBOOK

The general theory of stochastic processes and the more specialized theory of Markov processes evolved enormously in the second half of the last century. In parallel, the theory of controlled Markov chains (or Markov decision processes) was being pioneered by control engineers and operations researchers. Researchers in Markov processes and controlled Markov chains have been, for a long time, aware of the synergies between these two subject areas. However, this may be the first volume dedicated to highlighting these synergies and, almost certainly, it is the first volume that emphasizes the contributions of the vibrant and growing Chinese school of probability. The chapters that appear in this book reflect both the maturity and the vitality of modern day Markov processes and controlled Markov chains. They also will provide an opportunity to trace the connections that have emerged between the work done by members of the Chinese school of probability and the work done by the European, US, Central and South American and Asian scholars.


Mathematical Theory of Adaptive Control

Mathematical Theory of Adaptive Control

Author: Vladimir Grigor?evich Sragovich

Publisher: World Scientific

Published: 2006

Total Pages: 490

ISBN-13: 9812563717

DOWNLOAD EBOOK

The theory of adaptive control is concerned with construction of strategies so that the controlled system behaves in a desirable way, without assuming the complete knowledge of the system. The models considered in this comprehensive book are of Markovian type. Both partial observation and partial information cases are analyzed. While the book focuses on discrete time models, continuous time ones are considered in the final chapter. The book provides a novel perspective by summarizing results on adaptive control obtained in the Soviet Union, which are not well known in the West. Comments on the interplay between the Russian and Western methods are also included.


Identification and Stochastic Adaptive Control

Identification and Stochastic Adaptive Control

Author: Han-fu Chen

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 436

ISBN-13: 1461204291

DOWNLOAD EBOOK

Identifying the input-output relationship of a system or discovering the evolutionary law of a signal on the basis of observation data, and applying the constructed mathematical model to predicting, controlling or extracting other useful information constitute a problem that has been drawing a lot of attention from engineering and gaining more and more importance in econo metrics, biology, environmental science and other related areas. Over the last 30-odd years, research on this problem has rapidly developed in various areas under different terms, such as time series analysis, signal processing and system identification. Since the randomness almost always exists in real systems and in observation data, and since the random process is sometimes used to model the uncertainty in systems, it is reasonable to consider the object as a stochastic system. In some applications identification can be carried out off line, but in other cases this is impossible, for example, when the structure or the parameter of the system depends on the sample, or when the system is time-varying. In these cases we have to identify the system on line and to adjust the control in accordance with the model which is supposed to be approaching the true system during the process of identification. This is why there has been an increasing interest in identification and adaptive control for stochastic systems from both theorists and practitioners.


Self-Learning Control of Finite Markov Chains

Self-Learning Control of Finite Markov Chains

Author: A.S. Poznyak

Publisher: CRC Press

Published: 2000-01-03

Total Pages: 318

ISBN-13: 9780824794293

DOWNLOAD EBOOK

Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.


Adaptive Control, Filtering, and Signal Processing

Adaptive Control, Filtering, and Signal Processing

Author: K.J. Aström

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 404

ISBN-13: 1441985689

DOWNLOAD EBOOK

The area of adaptive systems, which encompasses recursive identification, adaptive control, filtering, and signal processing, has been one of the most active areas of the past decade. Since adaptive controllers are fundamentally nonlinear controllers which are applied to nominally linear, possibly stochastic and time-varying systems, their theoretical analysis is usually very difficult. Nevertheless, over the past decade much fundamental progress has been made on some key questions concerning their stability, convergence, performance, and robustness. Moreover, adaptive controllers have been successfully employed in numerous practical applications, and have even entered the marketplace.


Self-Learning Control of Finite Markov Chains

Self-Learning Control of Finite Markov Chains

Author: A.S. Poznyak

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 315

ISBN-13: 1482273276

DOWNLOAD EBOOK

Presents a number of new and potentially useful self-learning (adaptive) control algorithms and theoretical as well as practical results for both unconstrained and constrained finite Markov chains-efficiently processing new information by adjusting the control strategies directly or indirectly.


Robust Adaptive Control

Robust Adaptive Control

Author: Petros Ioannou

Publisher: Courier Corporation

Published: 2013-09-26

Total Pages: 850

ISBN-13: 0486320723

DOWNLOAD EBOOK

Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.