Markov Bases in Algebraic Statistics

Markov Bases in Algebraic Statistics

Author: Satoshi Aoki

Publisher: Springer Science & Business Media

Published: 2012-07-25

Total Pages: 294

ISBN-13: 1461437199

DOWNLOAD EBOOK

Algebraic statistics is a rapidly developing field, where ideas from statistics and algebra meet and stimulate new research directions. One of the origins of algebraic statistics is the work by Diaconis and Sturmfels in 1998 on the use of Gröbner bases for constructing a connected Markov chain for performing conditional tests of a discrete exponential family. In this book we take up this topic and present a detailed summary of developments following the seminal work of Diaconis and Sturmfels. This book is intended for statisticians with minimal backgrounds in algebra. As we ourselves learned algebraic notions through working on statistical problems and collaborating with notable algebraists, we hope that this book with many practical statistical problems is useful for statisticians to start working on the field.


Algebraic Statistics

Algebraic Statistics

Author: Seth Sullivant

Publisher: American Mathematical Soc.

Published: 2018-11-19

Total Pages: 506

ISBN-13: 1470435179

DOWNLOAD EBOOK

Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.


Lectures on Algebraic Statistics

Lectures on Algebraic Statistics

Author: Mathias Drton

Publisher: Springer Science & Business Media

Published: 2009-04-25

Total Pages: 177

ISBN-13: 3764389052

DOWNLOAD EBOOK

How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.


Algebraic Statistics for Computational Biology

Algebraic Statistics for Computational Biology

Author: L. Pachter

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 440

ISBN-13: 9780521857000

DOWNLOAD EBOOK

This book, first published in 2005, offers an introduction to the application of algebraic statistics to computational biology.


Algebraic Statistics

Algebraic Statistics

Author: Giovanni Pistone

Publisher: CRC Press

Published: 2000-12-21

Total Pages: 180

ISBN-13: 1420035762

DOWNLOAD EBOOK

Written by pioneers in this exciting new field, Algebraic Statistics introduces the application of polynomial algebra to experimental design, discrete probability, and statistics. It begins with an introduction to Grobner bases and a thorough description of their applications to experimental design. A special chapter covers the binary case


Algebraic and Geometric Methods in Statistics

Algebraic and Geometric Methods in Statistics

Author: Paolo Gibilisco

Publisher: Cambridge University Press

Published: 2010

Total Pages: 447

ISBN-13: 0521896193

DOWNLOAD EBOOK

An up-to-date account of algebraic statistics and information geometry, which also explores the emerging connections between these two disciplines.


Algebraic Statistics

Algebraic Statistics

Author: Seth Sullivant

Publisher: American Mathematical Society

Published: 2023-11-17

Total Pages: 506

ISBN-13: 1470475103

DOWNLOAD EBOOK

Algebraic statistics uses tools from algebraic geometry, commutative algebra, combinatorics, and their computational sides to address problems in statistics and its applications. The starting point for this connection is the observation that many statistical models are semialgebraic sets. The algebra/statistics connection is now over twenty years old, and this book presents the first broad introductory treatment of the subject. Along with background material in probability, algebra, and statistics, this book covers a range of topics in algebraic statistics including algebraic exponential families, likelihood inference, Fisher's exact test, bounds on entries of contingency tables, design of experiments, identifiability of hidden variable models, phylogenetic models, and model selection. With numerous examples, references, and over 150 exercises, this book is suitable for both classroom use and independent study.


Gröbner Bases

Gröbner Bases

Author: Takayuki Hibi

Publisher: Springer Science & Business Media

Published: 2014-01-07

Total Pages: 488

ISBN-13: 4431545743

DOWNLOAD EBOOK

The idea of the Gröbner basis first appeared in a 1927 paper by F. S. Macaulay, who succeeded in creating a combinatorial characterization of the Hilbert functions of homogeneous ideals of the polynomial ring. Later, the modern definition of the Gröbner basis was independently introduced by Heisuke Hironaka in 1964 and Bruno Buchberger in 1965. However, after the discovery of the notion of the Gröbner basis by Hironaka and Buchberger, it was not actively pursued for 20 years. A breakthrough was made in the mid-1980s by David Bayer and Michael Stillman, who created the Macaulay computer algebra system with the help of the Gröbner basis. Since then, rapid development on the Gröbner basis has been achieved by many researchers, including Bernd Sturmfels. This book serves as a standard bible of the Gröbner basis, for which the harmony of theory, application, and computation are indispensable. It provides all the fundamentals for graduate students to learn the ABC’s of the Gröbner basis, requiring no special knowledge to understand those basic points. Starting from the introductory performance of the Gröbner basis (Chapter 1), a trip around mathematical software follows (Chapter 2). Then comes a deep discussion of how to compute the Gröbner basis (Chapter 3). These three chapters may be regarded as the first act of a mathematical play. The second act opens with topics on algebraic statistics (Chapter 4), a fascinating research area where the Gröbner basis of a toric ideal is a fundamental tool of the Markov chain Monte Carlo method. Moreover, the Gröbner basis of a toric ideal has had a great influence on the study of convex polytopes (Chapter 5). In addition, the Gröbner basis of the ring of differential operators gives effective algorithms on holonomic functions (Chapter 6). The third act (Chapter 7) is a collection of concrete examples and problems for Chapters 4, 5 and 6 emphasizing computation by using various software systems.


Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics

Partitions, Hypergeometric Systems, and Dirichlet Processes in Statistics

Author: Shuhei Mano

Publisher: Springer

Published: 2018-07-12

Total Pages: 140

ISBN-13: 4431558888

DOWNLOAD EBOOK

This book focuses on statistical inferences related to various combinatorial stochastic processes. Specifically, it discusses the intersection of three subjects that are generally studied independently of each other: partitions, hypergeometric systems, and Dirichlet processes. The Gibbs partition is a family of measures on integer partition, and several prior processes, such as the Dirichlet process, naturally appear in connection with infinite exchangeable Gibbs partitions. Examples include the distribution on a contingency table with fixed marginal sums and the conditional distribution of Gibbs partition given the length. The A-hypergeometric distribution is a class of discrete exponential families and appears as the conditional distribution of a multinomial sample from log-affine models. The normalizing constant is the A-hypergeometric polynomial, which is a solution of a system of linear differential equations of multiple variables determined by a matrix A, called A-hypergeometric system. The book presents inference methods based on the algebraic nature of the A-hypergeometric system, and introduces the holonomic gradient methods, which numerically solve holonomic systems without combinatorial enumeration, to compute the normalizing constant. Furher, it discusses Markov chain Monte Carlo and direct samplers from A-hypergeometric distribution, as well as the maximum likelihood estimation of the A-hypergeometric distribution of two-row matrix using properties of polytopes and information geometry. The topics discussed are simple problems, but the interdisciplinary approach of this book appeals to a wide audience with an interest in statistical inference on combinatorial stochastic processes, including statisticians who are developing statistical theories and methodologies, mathematicians wanting to discover applications of their theoretical results, and researchers working in various fields of data sciences.


Statistics in the Public Interest

Statistics in the Public Interest

Author: Alicia L. Carriquiry

Publisher: Springer Nature

Published: 2022-04-22

Total Pages: 574

ISBN-13: 303075460X

DOWNLOAD EBOOK

This edited volume surveys a variety of topics in statistics and the social sciences in memory of the late Stephen Fienberg. The book collects submissions from a wide range of contemporary authors to explore the fields in which Fienberg made significant contributions, including contingency tables and log-linear models, privacy and confidentiality, forensics and the law, the decennial census and other surveys, the National Academies, Bayesian theory and methods, causal inference and causes of effects, mixed membership models, and computing and machine learning. Each section begins with an overview of Fienberg’s contributions and continues with chapters by Fienberg’s students, colleagues, and collaborators exploring recent advances and the current state of research on the topic. In addition, this volume includes a biographical introduction as well as a memorial concluding chapter comprised of entries from Stephen and Joyce Fienberg’s close friends, former students, colleagues, and other loved ones, as well as a photographic tribute.