Artificial Intelligence: A Modern Approach offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.
Get on board the next massive marketing revolution AI for Marketing and Product Innovation offers creatives and marketing professionals a non-tech guide to artificial intelligence (AI) and machine learning (ML)—twin technologies that stand poised to revolutionize the way we sell. The future is here, and we are in the thick of it; AI and ML are already in our lives every day, whether we know it or not. The technology continues to evolve and grow, but the capabilities that make these tools world-changing for marketers are already here—whether we use them or not. This book helps you lean into the curve and take advantage of AI’s unparalleled and rapidly expanding power. More than a simple primer on the technology, this book goes beyond the “what” to show you the “how”: How do we use AI and ML in ways that speak to the human spirit? How to we translate cold technological innovation into creative tools that forge deep human connections? Written by a team of experts at the intersection of neuroscience, technology, and marketing, this book shows you the ins and outs of these groundbreaking technological tools. Understand AI and ML technology in layman’s terms Harness the twin technologies unparalleled power to transform marketing Learn which skills and resources you need to use AI and ML effectively Employ AI and ML in ways that resonate meaningfully with customers Learn practical examples of how to reinvest product innovation, brand building, targeted marketing and media measurement to connect with people and enhance ROI Discover the true impact of AI and ML from real-world examples, and learn the thinking, best practices, and metrics you need to capture this lightning and take the next massive leap in the evolution of customer connection. AI for Marketing and Product Innovation shows you everything you need to know to get on board.
In the realm of analyzing human emotions through Artificial Intelligence (AI), a myriad of challenges persist. From the intricate nuances of emotional subtleties to the broader concerns of ethical considerations, privacy implications, and the ongoing battle against bias, AI faces a complex landscape when venturing into the understanding of human emotions. These challenges underscore the intricate balance required to navigate the human psyche with accuracy. The book, Using Machine Learning to Detect Emotions and Predict Human Psychology, serves as a guide for innovative solutions in the field of emotion detection through AI. It explores facial expression analysis, where AI decodes real-time emotions through subtle cues such as eyebrow movements and micro-expressions. In speech and voice analysis, the book unveils how AI processes vocal nuances to discern emotions, considering elements like tone, pitch, and language intricacies. Additionally, the power of text analysis is of great importance, revealing how AI extracts emotional tones from diverse textual communications. By weaving these systems together, the book offers a holistic solution to the challenges faced by AI in understanding the complex landscape of human emotions.
The ability to predict consumer choice is a fundamental aspect to success for any business. In the context of artificial intelligence marketing, there are a wide array of predictive analytic techniques available to achieve this purpose, each with its own unique advantages and disadvantages. Artificial Intelligence Marketing and Predicting Consumer Choice serves to integrate these widely disparate approaches, and show the strengths, weaknesses, and best applications of each. It provides a bridge between the person who must apply or learn these problem-solving methods and the community of experts who do the actual analysis. It is also a practical and accessible guide to the many remarkable advances that have been recently made in this fascinating field. Online resources: bonus chapters on AI, ensembles and neural nets, and finishing experiments, plus single and multiple product simulators.
Understanding consumer behavior in today's digital landscape is more challenging than ever. Businesses must navigate a sea of data to discern meaningful patterns and correlations that drive effective customer engagement and product development. However, the ever-changing nature of consumer behavior presents a daunting task, making it difficult for companies to gauge the wants and needs of their target audience accurately. Enhancing and Predicting Digital Consumer Behavior with AI offers a comprehensive solution to this pressing issue. A strong focus on concepts, theories, and analytical techniques for tracking consumer behavior changes provides the roadmap for businesses to navigate the complexities of the digital age. By covering topics such as digital consumers, emotional intelligence, and data analytics, this book serves as a timely and invaluable resource for academics and practitioners seeking to understand and adapt to the evolving landscape of consumer behavior.
The ultimate playbook for using artificial intelligence to communicate effectively, build teams, and win customers Not long ago, we imagined a hyper-connected world full of trust and openness—a world where effortless communication would bring about a new understanding between people everywhere. Judging from our current environment, this vision of the future may have been overly optimistic. With infinite channels and countless voices flooding them with messages, most people have become highly skeptical and guarded by necessity. As a result, communication is much harder than ever before. Despite the unprecedented connectivity enabled by modern technology, we are far less likely to trust and to invest the time needed to build strong relationships. How can we use technology to reverse this trend? A groundbreaking new branch of artificial intelligence—Personality AI—may be the answer. Combining traditional machine learning, data analytics, and behavioral psychology, Personality AI helps professional communicators tear down walls, establish trust with their audiences, and utilize data to build meaningful relationships, strengthen empathy, and win more customers. Predicting Personality is a practical, real-world playbook for any individual or business whose success hinges on the ability to communicate effectively and build teams. Authors Drew D’Agostino and Greg Skloot—CEO and President, respectively, of Crystal, the app that tells you anyone's personality—show you how businesses can leverage Personality AI and machine learning to grow faster and communicate more effectively than was previously possible. This reader-friendly guide teaches you what Personality AI is, how it works, and demonstrates its practical applications in both life and business. This book: ● Explains how to understand personality types in various contexts, including sales, recruiting, coaching ● Provides guidelines for using personality data to learn and execute ● Explores ethics and compliance considerations surrounding the use of Personality AI ● Offers valuable insights from a leader in the business applications of Personality AI Predicting Personality: Using AI to Understand People and Win More Business is a must-have guide for C-suite executives, sales and marketing professionals, coaches, recruiters, and business owners.
This book examines issues and implications of digital and social media marketing for emerging markets. These markets necessitate substantial adaptations of developed theories and approaches employed in the Western world. The book investigates problems specific to emerging markets, while identifying new theoretical constructs and practical applications of digital marketing. It addresses topics such as electronic word of mouth (eWOM), demographic differences in digital marketing, mobile marketing, search engine advertising, among others. A radical increase in both temporal and geographical reach is empowering consumers to exert influence on brands, products, and services. Information and Communication Technologies (ICTs) and digital media are having a significant impact on the way people communicate and fulfil their socio-economic, emotional and material needs. These technologies are also being harnessed by businesses for various purposes including distribution and selling of goods, retailing of consumer services, customer relationship management, and influencing consumer behaviour by employing digital marketing practices. This book considers this, as it examines the practice and research related to digital and social media marketing.
Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data
The contemporary world lives on the data produced at an unprecedented speed through social networks and the internet of things (IoT). Data has been called the new global currency, and its rise is transforming entire industries, providing a wealth of opportunities. Applied data science research is necessary to derive useful information from big data for the effective and efficient utilization to solve real-world problems. A broad analytical set allied with strong business logic is fundamental in today’s corporations. Organizations work to obtain competitive advantage by analyzing the data produced within and outside their organizational limits to support their decision-making processes. This book aims to provide an overview of the concepts, tools, and techniques behind the fields of data science and artificial intelligence (AI) applied to business and industries. The Handbook of Research on Applied Data Science and Artificial Intelligence in Business and Industry discusses all stages of data science to AI and their application to real problems across industries—from science and engineering to academia and commerce. This book brings together practice and science to build successful data solutions, showing how to uncover hidden patterns and leverage them to improve all aspects of business performance by making sense of data from both web and offline environments. Covering topics including applied AI, consumer behavior analytics, and machine learning, this text is essential for data scientists, IT specialists, managers, executives, software and computer engineers, researchers, practitioners, academicians, and students.
This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.