Maple and Mathematica

Maple and Mathematica

Author: Inna K. Shingareva

Publisher: Springer Science & Business Media

Published: 2007-12-27

Total Pages: 274

ISBN-13: 3211732659

DOWNLOAD EBOOK

By presenting side-by-side comparisons, this handbook enables Mathematica users to quickly learn Maple, and vice versa. The parallel presentation enables students, mathematicians, scientists, and engineers to easily find equivalent functions on each of these algebra programs. The handbook provides core material for incorporating Maple and Mathematica as working tools into many different undergraduate mathematics courses.


Maple and Mathematica

Maple and Mathematica

Author: Inna K. Shingareva

Publisher: Springer Science & Business Media

Published: 2010-04-29

Total Pages: 499

ISBN-13: 3211994335

DOWNLOAD EBOOK

In the history of mathematics there are many situations in which cal- lations were performed incorrectly for important practical applications. Let us look at some examples, the history of computing the number ? began in Egypt and Babylon about 2000 years BC, since then many mathematicians have calculated ? (e. g. , Archimedes, Ptolemy, Vi` ete, etc. ). The ?rst formula for computing decimal digits of ? was disc- ered by J. Machin (in 1706), who was the ?rst to correctly compute 100 digits of ?. Then many people used his method, e. g. , W. Shanks calculated ? with 707 digits (within 15 years), although due to mistakes only the ?rst 527 were correct. For the next examples, we can mention the history of computing the ?ne-structure constant ? (that was ?rst discovered by A. Sommerfeld), and the mathematical tables, exact - lutions, and formulas, published in many mathematical textbooks, were not veri?ed rigorously [25]. These errors could have a large e?ect on results obtained by engineers. But sometimes, the solution of such problems required such techn- ogy that was not available at that time. In modern mathematics there exist computers that can perform various mathematical operations for which humans are incapable. Therefore the computers can be used to verify the results obtained by humans, to discovery new results, to - provetheresultsthatahumancanobtainwithoutanytechnology. With respectto our example of computing?, we can mention that recently (in 2002) Y. Kanada, Y. Ushiro, H. Kuroda, and M.


Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Solving Nonlinear Partial Differential Equations with Maple and Mathematica

Author: Inna Shingareva

Publisher: Springer Science & Business Media

Published: 2011-07-24

Total Pages: 372

ISBN-13: 370910517X

DOWNLOAD EBOOK

The emphasis of the book is given in how to construct different types of solutions (exact, approximate analytical, numerical, graphical) of numerous nonlinear PDEs correctly, easily, and quickly. The reader can learn a wide variety of techniques and solve numerous nonlinear PDEs included and many other differential equations, simplifying and transforming the equations and solutions, arbitrary functions and parameters, presented in the book). Numerous comparisons and relationships between various types of solutions, different methods and approaches are provided, the results obtained in Maple and Mathematica, facilitates a deeper understanding of the subject. Among a big number of CAS, we choose the two systems, Maple and Mathematica, that are used worldwide by students, research mathematicians, scientists, and engineers. As in the our previous books, we propose the idea to use in parallel both systems, Maple and Mathematica, since in many research problems frequently it is required to compare independent results obtained by using different computer algebra systems, Maple and/or Mathematica, at all stages of the solution process. One of the main points (related to CAS) is based on the implementation of a whole solution method (e.g. starting from an analytical derivation of exact governing equations, constructing discretizations and analytical formulas of a numerical method, performing numerical procedure, obtaining various visualizations, and comparing the numerical solution obtained with other types of solutions considered in the book, e.g. with asymptotic solution).


An Introduction to Modern Mathematical Computing

An Introduction to Modern Mathematical Computing

Author: Jonathan M. Borwein

Publisher: Springer Science & Business Media

Published: 2012-08-07

Total Pages: 237

ISBN-13: 1461442532

DOWNLOAD EBOOK

Thirty years ago mathematical, as opposed to applied numerical, computation was difficult to perform and so relatively little used. Three threads changed that: the emergence of the personal computer; the discovery of fiber-optics and the consequent development of the modern internet; and the building of the Three “M’s” Maple, Mathematica and Matlab. We intend to persuade that Mathematica and other similar tools are worth knowing, assuming only that one wishes to be a mathematician, a mathematics educator, a computer scientist, an engineer or scientist, or anyone else who wishes/needs to use mathematics better. We also hope to explain how to become an "experimental mathematician" while learning to be better at proving things. To accomplish this our material is divided into three main chapters followed by a postscript. These cover elementary number theory, calculus of one and several variables, introductory linear algebra, and visualization and interactive geometric computation.


Mathematics for Physical Science and Engineering

Mathematics for Physical Science and Engineering

Author: Frank E. Harris

Publisher: Academic Press

Published: 2014-05-24

Total Pages: 787

ISBN-13: 0128010495

DOWNLOAD EBOOK

Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems


The Maple Book

The Maple Book

Author: Frank Garvan

Publisher: CRC Press

Published: 2001-11-28

Total Pages: 494

ISBN-13: 1420035606

DOWNLOAD EBOOK

Maple is a very powerful computer algebra system used by students, educators, mathematicians, statisticians, scientists, and engineers for doing numerical and symbolic computations. Greatly expanded and updated from the author's MAPLE V Primer, The MAPLE Book offers extensive coverage of the latest version of this outstanding software package, MAPL


Discovering Mathematics

Discovering Mathematics

Author: Jiří Gregor

Publisher: Springer Science & Business Media

Published: 2010-12-21

Total Pages: 243

ISBN-13: 0857290649

DOWNLOAD EBOOK

The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. Interrelated concepts are connected by hyperlinks, pointing toward easier or more difficult problems so as to show paths of mathematical reasoning. Basic definitions and theorems can also be found by hyperlinks from relevant places. Problems are open to alternative formulations, generalizations, simplifications, and verification of hypotheses by the reader; this is shown to be helpful in solving problems. The book presents how advanced mathematical software can aid all stages of mathematical reasoning while the mathematical content remains in foreground. The authors show how software can contribute to deeper understanding and to enlarging the scope of teaching for students and teachers of mathematics.


The MATHEMATICA ® Book, Version 3

The MATHEMATICA ® Book, Version 3

Author: Stephen Wolfram

Publisher:

Published: 1996-07-13

Total Pages: 1403

ISBN-13: 9780521588881

DOWNLOAD EBOOK

With over a million users around the world, the Mathematica ® software system created by Stephen Wolfram has defined the direction of technical computing for nearly a decade. With its major new document and computer language technology, the new version, Mathematica 3.0 takes the top-power capabilities of Mathematica and make them accessible to a vastly broader audience. This book presents this revolutionary new version of Mathematica. The Mathematica Book is a must-have purchase for anyone who wants to understand the revolutionary opportunities in science, technology, business and education made possible by Mathematica 3.0. This encompasses a broad audience of scientists and mathematicians; engineers; computer professionals; quantitative financial analysts; medical researchers; and students at high-school, college and graduate levels. Written by the creator of the system, The Mathematica Book includes both a tutorial introduction and complete reference information, and contains a comprehensive description of how to take advantage of Mathematica's ability to solve myriad technical computing problems and its powerful graphical and typesetting capabilities. Like previous editions, the book is sure to be found well-thumbed on the desks of many technical professionals and students around the world.


Mathematical Biology

Mathematical Biology

Author: Ronald W. Shonkwiler

Publisher: Springer Science & Business Media

Published: 2009-08-04

Total Pages: 552

ISBN-13: 0387709843

DOWNLOAD EBOOK

This text presents mathematical biology as a field with a unity of its own, rather than only the intrusion of one science into another. The book focuses on problems of contemporary interest, such as cancer, genetics, and the rapidly growing field of genomics.


Discovering Mathematics with Maple

Discovering Mathematics with Maple

Author: R.J. Stroeker

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 240

ISBN-13: 3034887264

DOWNLOAD EBOOK

This unusual introduction to Maple shows readers how Maple or any other computer algebra system fits naturally into a mathematically oriented work environment. Designed for mathematicians, engineers, econometricians, and other scientists, this book shows how computer algebra can enhance their theoretical work. A CD-ROM contains all the Maple worksheets presented in the book.