Manipulation RobotsDynamics, Control, and Optimization

Manipulation RobotsDynamics, Control, and Optimization

Author: Felix L. Chernousko

Publisher: CRC Press

Published: 1993-11-24

Total Pages: 278

ISBN-13: 9780849344572

DOWNLOAD EBOOK

Addresses challenging aspects of robotics research, including the dynamics of robots with elastic parts and optimal control of manipulators. Basics in kinematics, dynamics, drives, and control and sensor systems are discussed. To more efficiently evaluate the elastic compliance of robots and their dynamic accuracy, the authors propose new computer techniques and provide much experimental data. Optimal control methods presented in the book allow robotics engineers to increase the speed and productivity of robotic operations and reduce energy consumption. New developments in robotics covered include pneumatic sensors, adaptive grippers, special robotic systems for measurement and inspection, and wall-climbing robots with technological manipulators. The book will be an important reference for mechanical engineers, electrical engineers, robotics engineers, and researchers in automatic control.


Modern Robotics

Modern Robotics

Author: Kevin M. Lynch

Publisher: Cambridge University Press

Published: 2017-05-25

Total Pages: 545

ISBN-13: 1107156300

DOWNLOAD EBOOK

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.


A Mathematical Introduction to Robotic Manipulation

A Mathematical Introduction to Robotic Manipulation

Author: Richard M. Murray

Publisher: CRC Press

Published: 2017-12-14

Total Pages: 488

ISBN-13: 1351469789

DOWNLOAD EBOOK

A Mathematical Introduction to Robotic Manipulation presents a mathematical formulation of the kinematics, dynamics, and control of robot manipulators. It uses an elegant set of mathematical tools that emphasizes the geometry of robot motion and allows a large class of robotic manipulation problems to be analyzed within a unified framework. The foundation of the book is a derivation of robot kinematics using the product of the exponentials formula. The authors explore the kinematics of open-chain manipulators and multifingered robot hands, present an analysis of the dynamics and control of robot systems, discuss the specification and control of internal forces and internal motions, and address the implications of the nonholonomic nature of rolling contact are addressed, as well. The wealth of information, numerous examples, and exercises make A Mathematical Introduction to Robotic Manipulation valuable as both a reference for robotics researchers and a text for students in advanced robotics courses.


Robot Force Control

Robot Force Control

Author: Bruno Siciliano

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 154

ISBN-13: 1461544319

DOWNLOAD EBOOK

One of the fundamental requirements for the success of a robot task is the capability to handle interaction between manipulator and environment. The quantity that describes the state of interaction more effectively is the contact force at the manipulator's end effector. High values of contact force are generally undesirable since they may stress both the manipulator and the manipulated object; hence the need to seek for effective force control strategies. The book provides a theoretical and experimental treatment of robot interaction control. In the framework of model-based operational space control, stiffness control and impedance control are presented as the basic strategies for indirect force control; a key feature is the coverage of six-degree-of-freedom interaction tasks and manipulator kinematic redundancy. Then, direct force control strategies are presented which are obtained from motion control schemes suitably modified by the closure of an outer force regulation feedback loop. Finally, advanced force and position control strategies are presented which include passivity-based, adaptive and output feedback control schemes. Remarkably, all control schemes are experimentally tested on a setup consisting of a seven-joint industrial robot with open control architecture and force/torque sensor. The topic of robot force control is not treated in depth in robotics textbooks, in spite of its crucial importance for practical manipulation tasks. In the few books addressing this topic, the material is often limited to single-degree-of-freedom tasks. On the other hand, several results are available in the robotics literature but no dedicated monograph exists. The book is thus aimed at filling this gap by providing a theoretical and experimental treatment of robot force control.


Computational Optimal Control

Computational Optimal Control

Author: Roland Bulirsch

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 382

ISBN-13: 3034884974

DOWNLOAD EBOOK

Resources should be used sparingly both from a point of view of economy and eco logy. Thus in controlling industrial, economical and social processes, optimization is the tool of choice. In this area of applied numerical analysis, the INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL (IFAC) acts as a link between research groups in universities, national research laboratories and industry. For this pur pose, the technical committee Mathematics of Control of IFAC organizes biennial conferences with the objective of bringing together experts to exchange ideas, ex periences and future developments in control applications of optimization. There should be a genuine feedback loop between mathematicians, computer scientists, engineers and software developers. This loop should include the design, application and implementation of algorithms. The contributions of industrial practitioners are especially important. These proceedings contain selected papers from a workshop on CONTROL Ap PLICATIONS OF OPTIMIZATION, which took place at the Fachhochschule Miinchen in September 1992. The workshop was the ninth in a series of very successful bien nial meetings, starting with the Joint Automatic Control Conference in Denver in 1978 and followed by conferences in London, Oberpfaffenhofen, San Francisco, Ca pri, Tbilisi and Paris. The workshop was attended by ninety researchers from four continents. This volume represents the state of the art in the field, with emphasis on progress made since the publication of the proceedings of the Capri meeting, edited by G. di Pillo under the title 'Control Applications of Optimization and Nonlinear Programming'.


Robot Manipulator Control

Robot Manipulator Control

Author: Frank L. Lewis

Publisher: CRC Press

Published: 2003-12-12

Total Pages: 646

ISBN-13: 9780203026953

DOWNLOAD EBOOK

Robot Manipulator Control offers a complete survey of control systems for serial-link robot arms and acknowledges how robotic device performance hinges upon a well-developed control system. Containing over 750 essential equations, this thoroughly up-to-date Second Edition, the book explicates theoretical and mathematical requisites for controls design and summarizes current techniques in computer simulation and implementation of controllers. It also addresses procedures and issues in computed-torque, robust, adaptive, neural network, and force control. New chapters relay practical information on commercial robot manipulators and devices and cutting-edge methods in neural network control.


Theory of Applied Robotics

Theory of Applied Robotics

Author: Reza N. Jazar

Publisher: Springer Science & Business Media

Published: 2010-11-05

Total Pages: 888

ISBN-13: 144191756X

DOWNLOAD EBOOK

The second edition of this book would not have been possible without the comments and suggestions from my students, especially those at Columbia University. Many of the new topics introduced here are a direct result of student feedback that helped me refine and clarify the material. My intention when writing this book was to develop material that I would have liked to had available as a student. Hopefully, I have succeeded in developing a reference that covers all aspects of robotics with sufficient detail and explanation. The first edition of this book was published in 2007 and soon after its publication it became a very popular reference in the field of robotics. I wish to thank the many students and instructors who have used the book or referenced it. Your questions, comments and suggestions have helped me create the second edition. Preface This book is designed to serve as a text for engineering students. It introduces the fundamental knowledge used in robotics. This knowledge can be utilized to develop computer programs for analyzing the kinematics, dynamics, and control of robotic systems.


Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control

Author: Aude Billard

Publisher: MIT Press

Published: 2022-02-08

Total Pages: 425

ISBN-13: 0262367017

DOWNLOAD EBOOK

Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.


Robot Dynamics And Control

Robot Dynamics And Control

Author: Mark W Spong

Publisher: John Wiley & Sons

Published: 2008-08-04

Total Pages: 356

ISBN-13: 9788126517800

DOWNLOAD EBOOK

This self-contained introduction to practical robot kinematics and dynamics includes a comprehensive treatment of robot control. It provides background material on terminology and linear transformations, followed by coverage of kinematics and inverse kinematics, dynamics, manipulator control, robust control, force control, use of feedback in nonlinear systems, and adaptive control. Each topic is supported by examples of specific applications. Derivations and proofs are included in many cases. The book includes many worked examples, examples illustrating all aspects of the theory, and problems.


System-Level Synthesis

System-Level Synthesis

Author: Ahmed Amine Jerraya

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 441

ISBN-13: 9401146985

DOWNLOAD EBOOK

System-Level Synthesis deals with the concurrent design of electronic applications, including both hardware and software. The issue has become the bottleneck in the design of electronic systems, including both hardware and software, in several major industrial fields, including telecommunications, automotive and aerospace engineering. The major difficulty with the subject is that it demands contributions from several research fields, including system specification, system architecture, hardware design, and software design. Most existing book cover well only a few aspects of system-level synthesis. The present volume presents a comprehensive discussion of all the aspects of system-level synthesis. Each topic is covered by a contribution written by an international authority on the subject.