Major Research Topics in Combustion

Major Research Topics in Combustion

Author: M.Y. Hussaini

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 668

ISBN-13: 1461228840

DOWNLOAD EBOOK

The Institute for Computer Applications in Science and Engineer ing (ICASE) and NASA Langley Research Center (LaRC) brought together on October 2-4, 1989 experts in the various areas of com bustion with a view to expose them to some combustion problems of technological interest to LaRC and possibly foster interaction with the academic community in these research areas. The top ics chosen for this purpose were flame structure, flame stability, flame holding/extinction, chemical kinetics, turbulence-kinetics in teraction, transition to detonation, and reacting free shear layers. The lead paper set the stage by discussing the status and issues of supersonic combustion relevant to scramjet engine. Then the ex perts were called upon i) to review the current status of knowledge in the aforementioned ;:I. reas, ii) to focus on how this knowledge can be extended and applied to high-speed combustion, and iii) to suggest future directions of research in these areas. Each topic was then dealt with in a position paper followed by formal discussion papers and a general discussion involving the participants. The position papers discussed the state-of-the-art with an emphasis on key issues that needed to be resolved in the near future. The discussion papers crit ically examined these issues and filled in any lacunae therein. The edited versions of the general discussions in the form of questions from the audience and answers from the speakers are included wher ever possible to give the reader the flavor of the lively interactions that took place.


Combustion Phenomena

Combustion Phenomena

Author: Jozef Jarosinski

Publisher: CRC Press

Published: 2009-02-12

Total Pages: 236

ISBN-13: 0849384095

DOWNLOAD EBOOK

Extensively using experimental and numerical illustrations, CombustionPhenomena: Selected Mechanisms of Flame Formation, Propagation, and Extinction provides a comprehensive survey of the fundamental processes of flame formation, propagation, and extinction. Taking you through the stages of combustion, leading experts visually display, mathematically explain, and clearly theorize on important physical topics of combustion. After a historical introduction to the field, they discuss combustion chemistry, flammability limits, and spark ignition. They also study counterflow twin-flame configuration, flame in a vortex core, the propagation characteristics of edge flames, instabilities, and tulip flames. In addition, the book describes flame extinction in narrow channels, global quenching of premixed flames by turbulence, counterflow premixed flame extinction limits, the interaction of flames with fluids in rotating vessels, and turbulent flames. The final chapter explores diffusion flames as well as combustion in spark- and compression-ignition engines. It also examines the transition from deflagration to detonation, along with the detonation wave structure. With downloadable resources of images that beautifully illustrate a range of combustion phenomena, this book facilitates a practical understanding of the processes occurring in the conception, spread, and extinguishment of a flame. It will help you on your way to finding solutions to real issues encountered in transportation, power generation, industrial processes, chemical engineering, and fire and explosion hazards.


Fundamentals of Turbulent and Multiphase Combustion

Fundamentals of Turbulent and Multiphase Combustion

Author: Kenneth Kuan-yun Kuo

Publisher: John Wiley & Sons

Published: 2012-07-03

Total Pages: 914

ISBN-13: 111809929X

DOWNLOAD EBOOK

Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.


Modern Research Topics in Aerospace Propulsion

Modern Research Topics in Aerospace Propulsion

Author: Gianfranco Angelino

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 390

ISBN-13: 1461209455

DOWNLOAD EBOOK

This volume, published in honor of Professor Corrado Casci, celebrates the life of a very distinguished international figure devoted to sCientific study, research, teaching, and leadership. The numerous contributions of Corrado CasCi are widely admired by scientists and engineers around the globe. He has been an impressive model and outstanding colleague to many researchers. Unfortunately, only a few of them could be invited to contribute to this honorific volume. Everyone of the invited contributors responded with enthusiasm. v Corrado Casci Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Xl Publications of Corrado Casci . . . . . . . . . . . . . . . . . . . . . . . . . . . xix . . . . . . . . . I. Combustion 1. Mechanics of Turbulent Flow in Combustors for Premixed Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 A. K. OPPENHEIM 2. A Pore-Structure-Independent Combustion Model for Porous Media with Application to Graphite Oxidation 19 M. B. RICHARDS AND S. S. PENNER 3. Stabilization of Hydrogen-Air Flames in Supersonic Flow. . 37 G. WINTERFELD 4. Thermodynamics of Refractory Material Formation by Combustion Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 49 I. GLASSMAN, K. BREZINSKY, AND K. A. DAVIS 5. Catalytic Combustion Processes . . . . . . . . . . . . . . . . . . . . . . 63 A. P. GLASKOVA 6. Stability of Ignition Transients of Reactive Solid Mixtures 83 V. E. ZARKO 7. Combustion Modeling and Stability of Double-Base Solid Rocket Propellants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 L. DE LUCA AND L. GALFETTI 8. Combustion Instabilities and Rayleigh's Criterion 135 F. E. C. CULICK II. Liquid Sprays 9. On the Anisotropy of Drop and Particle Velocity Fluctuations in Two-Phase Round Gas Jets . . . . . . . . . . . . . 155 A. TOMBOULIDES, M. l ANDREWS, AND F. V. BRACCO vii viii Contents 10.


Advanced Technologies for Gas Turbines

Advanced Technologies for Gas Turbines

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-04-19

Total Pages: 137

ISBN-13: 0309664225

DOWNLOAD EBOOK

Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.


Advances in Internal Combustion Engine Research

Advances in Internal Combustion Engine Research

Author: Dhananjay Kumar Srivastava

Publisher: Springer

Published: 2017-11-29

Total Pages: 346

ISBN-13: 9811075751

DOWNLOAD EBOOK

This book discusses all aspects of advanced engine technologies, and describes the role of alternative fuels and solution-based modeling studies in meeting the increasingly higher standards of the automotive industry. By promoting research into more efficient and environment-friendly combustion technologies, it helps enable researchers to develop higher-power engines with lower fuel consumption, emissions, and noise levels. Over the course of 12 chapters, it covers research in areas such as homogeneous charge compression ignition (HCCI) combustion and control strategies, the use of alternative fuels and additives in combination with new combustion technology and novel approaches to recover the pumping loss in the spark ignition engine. The book will serve as a valuable resource for academic researchers and professional automotive engineers alike.


Tribology in Environmental Design 2003

Tribology in Environmental Design 2003

Author: Mark Hadfield

Publisher: John Wiley & Sons

Published: 2003-10-24

Total Pages: 416

ISBN-13: 9781860584152

DOWNLOAD EBOOK

Tribology in Environmental Design is an indispensable collection of chapters exploring the life cycle of all stages of tribological issues for product design. The contributors for this edition are from a wide range of disciplines and countries ensuring a comprehensive overview of Tribology in Environment Design. This well-renowned second international conference explores the role of tribology in the context of product design and how this influences environmental, as well as product life cycle, consequences. Topics covered include: Sustainable Design Life-oriented Products Life-cycle Assessment for Optimized Products Surface Engineering Lubricants Test Methods Advanced Materials Analytical Studies


Advanced Technologies for Gas Turbines

Advanced Technologies for Gas Turbines

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-03-19

Total Pages: 137

ISBN-13: 030966425X

DOWNLOAD EBOOK

Leadership in gas turbine technologies is of continuing importance as the value of gas turbine production is projected to grow substantially by 2030 and beyond. Power generation, aviation, and the oil and gas industries rely on advanced technologies for gas turbines. Market trends including world demographics, energy security and resilience, decarbonization, and customer profiles are rapidly changing and influencing the future of these industries and gas turbine technologies. Technology trends that define the technological environment in which gas turbine research and development will take place are also changing - including inexpensive, large scale computational capabilities, highly autonomous systems, additive manufacturing, and cybersecurity. It is important to evaluate how these changes influence the gas turbine industry and how to manage these changes moving forward. Advanced Technologies for Gas Turbines identifies high-priority opportunities for improving and creating advanced technologies that can be introduced into the design and manufacture of gas turbines to enhance their performance. The goals of this report are to assess the 2030 gas turbine global landscape via analysis of global leadership, market trends, and technology trends that impact gas turbine applications, develop a prioritization process, define high-priority research goals, identify high-priority research areas and topics to achieve the specified goals, and direct future research. Findings and recommendations from this report are important in guiding research within the gas turbine industry and advancing electrical power generation, commercial and military aviation, and oil and gas production.