Physics of Neutron Star Interiors

Physics of Neutron Star Interiors

Author: D. Blaschke

Publisher: Springer

Published: 2008-01-11

Total Pages: 521

ISBN-13: 3540445781

DOWNLOAD EBOOK

Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strengths of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It addresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature.


Physics of Neutron Star Interiors

Physics of Neutron Star Interiors

Author: D. Blaschke

Publisher: Springer

Published: 2001-11-20

Total Pages: 516

ISBN-13: 9783540423409

DOWNLOAD EBOOK

Neutron stars are the densest observable bodies in our universe. Born during the gravitational collapse of luminous stars - a birth heralded by spectacular supernova explosions - they open a window on a world where the state of the matter and the strengths of the fields are anything but ordinary. This book is a collection of pedagogical lectures on the theory of neutron stars, and especially their interiors, at the forefront of current research. It addresses graduate students and researchers alike, and should be particularly suitable as a text bridging the gap between standard textbook material and the research literature.


Isolated Neutron Stars: From the Surface to the Interior

Isolated Neutron Stars: From the Surface to the Interior

Author: Silvia Zane

Publisher: Springer Science & Business Media

Published: 2007-05-22

Total Pages: 654

ISBN-13: 1402059981

DOWNLOAD EBOOK

This book is a collation of the contributions presented at a major conference on isolated neutron stars held in London in April 2006. Forty years after the discovery of radio pulsars it presents an up-to-date description of the new vision of isolated neutron stars that has emerged in recent years. The great variety of isolated neutron stars, from pulsars to magnetars, is well covered by descriptions of recent observational results and presentations of the latest theoretical interpretation of these data.


Neutron Star Electromagnetic Field Structure

Neutron Star Electromagnetic Field Structure

Author: Hugh O. Thurman (III.)

Publisher:

Published: 2004

Total Pages: 388

ISBN-13:

DOWNLOAD EBOOK

This dissertation investigates the neutron star magnetic field from generation to radiation production. We have investigated the spontaneous magnetization process to explain the magnetic field generation. This magnetization is then applied to determine the electromagnetic field structure of the neutron star. As an application of these two calculations, we briefly investigate several radiation mechanisms that are closely related to stellar magnetic fields. Neutron star magnetic field generation is studied through the spontaneous magnetization process. This process was studied in the non-relativistic, ultra-relativistic, and rigorous relativistic dispersion regimes for the neutrons. Both analytical and numerical approaches show that a phase transition is present for a density near 10 38 cm -3 and a temperature near 10 9 K . This density is consistent with most neutron star models. Using the magnetized interior, the neutron star electromagnetic field is derived from the vector potential. The derived magnetic field is more complicated than just a magnetic dipole which is the most common approximation to the magnetic field. The electromagnetic field structure is derived under the Goldreich-Julian approach. Finally this electromagnetic field is applied to three radiation mechanisms in attempt to understand the high-frequency radiation observed from neutron stars. The processes studied are curvature radiation, pair production, and synchrotron radiation. The curvature radiation is most greatly affected by the electromagnetic field because the radius of curvature is reduced by a factor 10 when just the quadrapole term is included. This directly affects the number of photons energetic enough to undergo pair production. These electron-positron pairs are also more energetic and the synchrotron radiation spectrum is affected by not only the injection angle but the magnetic field curvature as well.


Neutron Stars 1

Neutron Stars 1

Author: P. Haensel

Publisher: Springer Science & Business Media

Published: 2007-12-06

Total Pages: 633

ISBN-13: 0387473017

DOWNLOAD EBOOK

The book gives an extended review of theoretical and observational aspects of neutron star physics. With masses comparable to that of the Sun and radii of about ten kilometres, neutron stars are the densest stars in the Universe. This book describes all layers of neutron stars, from the surface to the core, with the emphasis on their structure and equation of state. Theories of dense matter are reviewed, and used to construct neutron star models. Hypothetical strange quark stars and possible exotic phases in neutron star cores are also discussed. Also covered are the effects of strong magnetic fields in neutron star envelopes.


Neutron Stars, the Exotica

Neutron Stars, the Exotica

Author: Farbod Kamiab

Publisher:

Published: 2015

Total Pages: 126

ISBN-13:

DOWNLOAD EBOOK

The gravitational aether theory is a modification of General Relativity that decouples vacuum energy from gravity, and thus can potentially address the cosmological constant problem. The classical theory is distinguishable from General Relativity only in the presence of relativistic pressure (or vorticity). Since the interior of neutron stars has high pressure and as their mass and radius can be measured observationally, they are the perfect laboratory for testing the validity of the aether theory. In this thesis, we first solve the hydrostatic equations of stellar structure for the gravitational aether theory and find the predicted mass-radius relation of nonrotating neutron stars using two different realistic proposals for the equation of state of nuclear matter. We find that the maximum neutron-star mass predicted by the aether theory is 12%-16% less than the maximum mass predicted by general relativity assuming these two equations of state. We then study the dynamics of a neutron star in the aether theory and establish that a Cauchy problem can be defined. We derive the dynamical equations, and through analyzing them, we find two modes, one of which is well-posed (expansion of matter in the aether frame) and the other is not well-posed (collapse of matter in the aether frame). Starting from a hydrostatic neutron star configuration that we perturb by adding extrinsic curvature (and radial velocity), we numerically evolve the Einstein field equations for the aether theory in the well-posed mode and find that it evolves towards the not well-posed regime. This feature may pose a serious challenge to our initial value formulation of the aether theory. Whether an alternative formulation can handle the collapsing neutron stars is a question of utmost importance for the viability of the aether theory. It has been clear for some time now that super-critical surface magnetic fields, exceeding 4 x 10^13 G, exist on a subset of neutron stars. These magnetars may harbor interior fields many orders of magnitude larger, potentially reaching equipartition values. However, the impact of these strong fields on stellar structure has been largely ignored, potentially complicating attempts to infer the high density nuclear equation of state. In this thesis, we assess the effect of these strong magnetic fields on the mass-radius relationship of neutron stars. We employ an effective field theory model for the nuclear equation of state that includes the impact of hyperons, anomalous magnetic moments, and the physics of the crust. We consider two magnetic field geometries, bounding the likely magnitude of the impact of magnetic fields: a statistically isotropic, tangled field and a force-free configuration. In both cases even equipartition fields have at most a 30% impact on the maximum mass. However, the direction of the effect of the magnetic field depends on the geometry employed - force-free fields leading to reductions in the maximum neutron star mass and radius while tangled fields increase both - challenging the common intuition in the literature on the impact of magnetic fields.