The Strongest Magnetic Fields in the Universe

The Strongest Magnetic Fields in the Universe

Author: Vasily S. Beskin

Publisher: Springer

Published: 2016-01-29

Total Pages: 579

ISBN-13: 149393550X

DOWNLOAD EBOOK

This volume extends the ISSI series on magnetic fields in the Universe into the domain of what are by far the strongest fields in the Universe, and stronger than any field that could be produced on Earth. The chapters describe the magnetic fields in non-degenerate strongly magnetized stars, in degenerate stars (such as white dwarfs and neutron stars), exotic members called magnetars, and in their environments, as well as magnetic fields in the environments of black holes. These strong fields have a profound effect on the behavior of matter, visible in particular in highly variable processes like radiation in all known wavelengths, including Gamma-Ray bursts. The generation and structure of such strong magnetic fields and effects on the environment are also described.


Neutron Star Crust

Neutron Star Crust

Author: Carlos A. Bertulani

Publisher:

Published: 2013-01-11

Total Pages: 0

ISBN-13: 9781620819029

DOWNLOAD EBOOK

Includes bibliographical references and index.


The Electromagnetic Spectrum of Neutron Stars

The Electromagnetic Spectrum of Neutron Stars

Author: Altan Baykal

Publisher: Springer Science & Business Media

Published: 2006-01-20

Total Pages: 383

ISBN-13: 1402038615

DOWNLOAD EBOOK

Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiation along with the electromagnetic spectrum. We believe that this volume can serve as graduate level of text including the broad range of properties of neutron stars.


MHD Flows in Compact Astrophysical Objects

MHD Flows in Compact Astrophysical Objects

Author: Vasily S. Beskin

Publisher: Springer Science & Business Media

Published: 2009-12-08

Total Pages: 425

ISBN-13: 3642012906

DOWNLOAD EBOOK

Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy extraction from a rotating black hole immersed in an external magnetic field. Finally, on the basis of the full MHD version of the Grad-Shafranov equation the author discusses the problems of jet collimation and particle acceleration in Active Galactic Nuclei, radio pulsars, and Young Stellar Objects. The comparison of the analytical results with numerical simulations demonstrates their good agreement. Assuming that the reader is familiar with the basic physical and mathematical concepts of General Relativity, the author uses the 3+1 split approach which allows the formulation of all results in terms of physically clear language of three dimensional vectors. The book contains detailed derivations of equations, numerous exercises, and an extensive bibliography. It therefore serves as both an introductory text for graduate students and a valuable reference work for researchers in the field.


High-Energy Radiation from Magnetized Neutron Stars

High-Energy Radiation from Magnetized Neutron Stars

Author: Peter Mészáros

Publisher: University of Chicago Press

Published: 1992-06

Total Pages: 560

ISBN-13: 9780226520933

DOWNLOAD EBOOK

Neutron stars, the most extreme state of matter yet confirmed, are responsible for much of the high-energy radiation detected in the universe. Mèszàros provides a general overview of the physics of magnetized neutron stars, discusses in detail the radiation processes and transport properties relevant to the production and propagation of high-energy radiation in the outer layers of these objects, and reviews the observational properties and theoretical models of various types of neutron star sources.


The X-ray Background

The X-ray Background

Author: Xavier Barcons

Publisher: Cambridge University Press

Published: 1992-07-31

Total Pages: 328

ISBN-13: 9780521416511

DOWNLOAD EBOOK

A review of the current observational knowledge and understanding of the cosmic X-ray background.


The Physics and Astrophysics of Neutron Stars

The Physics and Astrophysics of Neutron Stars

Author: Luciano Rezzolla

Publisher: Springer

Published: 2019-01-09

Total Pages: 825

ISBN-13: 3319976168

DOWNLOAD EBOOK

This book summarizes the recent progress in the physics and astrophysics of neutron stars and, most importantly, it identifies and develops effective strategies to explore, both theoretically and observationally, the many remaining open questions in the field. Because of its significance in the solution of many fundamental questions in nuclear physics, astrophysics and gravitational physics, the study of neutron stars has seen enormous progress over the last years and has been very successful in improving our understanding in these fascinating compact objects. The book addresses a wide spectrum of readers, from students to senior researchers. Thirteen chapters written by internationally renowned experts offer a thorough overview of the various facets of this interdisciplinary science, from neutron star formation in supernovae, pulsars, equations of state super dense matter, gravitational wave emission, to alternative theories of gravity. The book was initiated by the European Cooperation in Science and Technology (COST) Action MP1304 “Exploring fundamental physics with compact stars” (NewCompStar).


Magnetohydrodynamics in Binary Stars

Magnetohydrodynamics in Binary Stars

Author: C. G. Campbell

Publisher: Springer

Published: 2018-10-13

Total Pages: 481

ISBN-13: 331997646X

DOWNLOAD EBOOK

Magnetism in binary stars is an area of central importance in stellar astrophysics. The second edition of "Magnetohydrodynamics in Binary Stars" is a major revision of the first edition. The material has been updated and extended, including additional chapters on the origins of the stellar magnetic fields and accretion disc magnetic winds. A comprehensive account is given of the subject, from the early work up to the latest results. The unifying theme remains the redistribution of angular momentum by magnetic stresses. This occurs in a wide variety of ways, including magnetic stellar and orbital coupling, magnetic channelling of accretion streams, magnetic stellar coupling to accretion discs, dynamo field coupling in discs, and magnetic stellar and disc winds. The associated stellar spin and orbital evolution problems, including stability, are also considered. Although the main focus is on binary stars, much of the work on accretion discs and wind flows has more general astrophysical relevance. Convenient formulae are included that can be compared to observations, making the book useful to observers as well as theorists, and there are extensive reference lists. The material is mainly aimed at research workers, but parts of the text could be useful for postgraduate courses in magnetic stellar astrophysics topics.


An Introduction to Plasma Astrophysics and Magnetohydrodynamics

An Introduction to Plasma Astrophysics and Magnetohydrodynamics

Author: M. Goossens

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 215

ISBN-13: 9400710763

DOWNLOAD EBOOK

Most of the visible matter in the universe exists in the plasma state. Plasmas are of major importance for space physics, solar physics, and astrophysics. On Earth they are essential for magnetic controlled thermonuclear fusion. This textbook collects lecture notes from a one-semester course taught at the K.U. Leuven to advanced undergraduate students in applied mathematics and physics. A particular strength of this book is that it provides a low threshold introduction to plasmas with an emphasis on first principles and fundamental concepts and properties. The discussion of plasma models is to a large extent limited to Magnetohydrodynamics (MHD) with its merits and limitations clearly explained. MHD provides the students on their first encounter with plasmas, with a powerful plasma model that they can link to familiar classic fluid dynamics. The solar wind is studied as an example of hydrodynamics and MHD at work in solar physics and astrophysics.