MACROSPIN & MICROMAGNETIC SIMU

MACROSPIN & MICROMAGNETIC SIMU

Author: Tui Zeng

Publisher: Open Dissertation Press

Published: 2017-01-26

Total Pages: 146

ISBN-13: 9781361014196

DOWNLOAD EBOOK

This dissertation, "Macrospin and Micromagnetic Simulations of Spintronic Devices for Magnetic Sensors and Oscillator Applications" by Tui, Zeng, 曾推, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In this thesis, by categorizing the application of spintronic devices with the standard of signal type being processed, the spintronic devices based magnetic field sensors which process the D.C. signal are studied with micromagnetic simulation and the spintronic devices based spin-torque oscillators which process the A.C. signal are studied with macrospin simulation. By conducting micromagnetic simulation, the thermally excited mag-noise in spintronic device based magnetic field sensors is systematically studied. In magnetic tunnel junctions (MTJ) based magnetic field sensor, the spatial distribution of the thermally excited mag-noise indicates that the edges are the main contributor of thermal mag-noise in the free layer (FL). Both hard bias (HB) field and applied field could suppress the thermal mag-noise in edges. A relatively high applied field will decrease the influence of HB field on mag-noise in edges. The edge effect is not applicable for MTJ sensors with circular cross section. In ferromagnetic ring structure based magnetic field sensor, the saturated state, triangle state, half triangle state, onion state, and vortex state are explored and studied, respectively. The mag-noise calculation shows that triangle state is the main reason for the mag-noise exhibiting 1/f tendency in both the low-frequency range and high-frequency range in relaxed state, while the onion state explains why a noise peak appears in high-frequency range in the relaxed state. It is proved that the area of the ferromagnetic rings is not the determining factor for the thermal mag-noise distribution in the saturated state. In dual-vortex structure based magnetic field sensor, the combination of the dual-vortex motion and the magnetic noise properties make it possible to measure the external field (along hard bias direction) through measuring the FMR peak positions or the integrated thermal mag-noise, which indicated two novel field sensing mechanisms using elliptical permalloy single layer. Besides the study of the thermally excited mag-noise in spintronic device based magnetic field sensors, the spintronic device based spintorque oscillators (STOs) is fully investigated by macrospin simulation. Conclusions demonstrate numerically and analytically how a STO locks to a microwave field (Hac). A magnetic energy based analysis is used to explain this phenomenon. This result provides a possible way to synchronize serially connected STOs by tuning each single STO's phase shift with external microwave field, which could finally enhance the locking efficiency, locking range and output power of serially connected STOs. Meanwhile, the capacitance effect on the oscillation characteristics and the switching characteristics of the STOs has also been studied. The micromagnetic simulation of the noise sources in traditional GMR/TMR based magnetic field sensor and novel spintronic device based magnetic field sensors not onlyprovide reliable explanations of noise-related phenomenon in magnetic field sensors but also offer guidance on how to fabricate magnetic field sensors with relative low thermal magnetic noise and high performance. Meanwhile, the macrospin study of the spin-torque oscillators which process A.C electrical current signal has provided theoretical fundamentals for next generation microwave generator. Subjects: Spintronics - Materials Magnetic materials


Spintronics

Spintronics

Author: Kaiyou Wang

Publisher: John Wiley & Sons

Published: 2022-07-14

Total Pages: 340

ISBN-13: 1119698952

DOWNLOAD EBOOK

Discover the latest advances in spintronic materials, devices, and applications In Spintronics: Materials, Devices and Applications, a team of distinguished researchers delivers a holistic introduction to spintronic effects within cutting-edge materials and applications. Containing the perfect balance of academic research and practical application, the book discusses the potential—and the key limitations and challenges—of spintronic devices. The latest title in the Wiley Series in Materials for Electronic and Optoelectronic Applications, Spintronics: Materials, Devices and Applications explores giant magneto-resistance (GMR) and tunneling magnetic resistance (TMR) materials, spin-transfer torque and spin-orbit torque materials, spin oscillators, and spin materials for use in artificial neural networks. Applications in multi-ferroelectric and antiferromagnetic materials are presented as well. This book also includes: A thorough introduction to recent research developments in the fields of spintronic materials, devices, and applications Comprehensive explorations of skymions, magnetic semiconductors, and antiferromagnetic materials Practical discussions of spin-transfer torque materials and devices for magnetic random-access memory In-depth examinations of giant magneto-resistance materials and devices for magnetic sensors Perfect for advanced students and researchers in materials science, physics, electronics, and computer science, Spintronics: Materials, Devices and Applications will also earn a place in the libraries of professionals working in the manufacture of optics, photonics, and nanometrology equipment.


Spintronics

Spintronics

Author: Puja Dey

Publisher: Springer Nature

Published: 2021-04-13

Total Pages: 287

ISBN-13: 9811600694

DOWNLOAD EBOOK

This book highlights the overview of Spintronics, including What is Spintronics ?; Why Do We Need Spintronics ?; Comparative merit-demerit of Spintronics and Electronics ; Research Efforts put on Spintronics ; Quantum Mechanics of Spin; Dynamics of magnetic moments : Landau-Lifshitz-Gilbert Equation; Spin-Dependent Band Gap in Ferromagnetic Materials; Functionality of ‘Spin’ in Spintronics; Different Branches of Spintronics etc. Some important notions on basic elements of Spintronics are discussed here, such as – Spin Polarization, Spin Filter Effect, Spin Generation and Injection, Spin Accumulation, Different kinds of Spin Relaxation Phenomena, Spin Valve, Spin Extraction, Spin Hall Effect, Spin Seebeck Effect, Spin Current Measurement Mechanism, Magnetoresistance and its different kinds etc. Concept of Giant Magnetoresistance (GMR), different types of GMR, qualitative and quantitative explanation of GMR employing Resistor Network Theory are presented here. Tunnelling Magnetoresistance (TMR), Magnetic Junctions, Effect of various parameters on TMR, Measurement of spin relaxation length and time in the spacer layer are covered here. This book highlights the concept of Spin Transfer Torque (STT), STT in Ferromagnetic Layer Structures, STT driven Magnetization Dynamics, STT in Magnetic Multilayer Nanopillar etc. This book also sheds light on Magnetic Domain Wall (MDW) Motion, Ratchet Effect in MDW motion, MDW motion velocity measurements, Current-driven MDW motion, etc. The book deals with the emerging field of spintronics, i.e., Opto-spintronics. Special emphasis is given on ultrafast optical controlling of magnetic states of antiferromagnet, Spin-photon interaction, Faraday Effect, Inverse Faraday Effect and outline of different all-optical spintronic switching. One more promising branch i.e., Terahertz Spintronics is also covered. Principle of operation of spintronic terahertz emitter, choice of materials, terahertz writing of an antiferromagnetic magnetic memory device is discussed. Brief introduction of Semiconductor spintronics is presented that includes dilute magnetic semiconductor, feromagnetic semiconductor, spin polarized semiconductor devices, three terminal spintronic devices, Spin transistor, Spin-LED, and Spin-Laser. This book also emphasizes on several modern spintronics devices that includes GMR Read Head of Modern Hard Disk Drive, MRAM, Position Sensor, Biosensor, Magnetic Field sensor, Three Terminal Magnetic Memory Devices, Spin FET, Race Track Memory and Quantum Computing.


Metallic Spintronic Devices

Metallic Spintronic Devices

Author: Xiaobin Wang

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 274

ISBN-13: 1466588454

DOWNLOAD EBOOK

Metallic Spintronic Devices provides a balanced view of the present state of the art of metallic spintronic devices, addressing both mainstream and emerging applications from magnetic tunneling junction sensors and spin torque oscillators to spin torque memory and logic. Featuring contributions from well-known and respected industrial and academic experts, this cutting-edge work not only presents the latest research and developments but also: Describes spintronic applications in current and future magnetic recording devices Discusses spin-transfer torque magnetoresistive random-access memory (STT-MRAM) device architectures and modeling Explores prospects of STT-MRAM scaling, such as detailed multilevel cell structure analysis Investigates spintronic device write and read optimization in light of spintronic memristive effects Considers spintronic research directions based on yttrium iron garnet thin films, including spin pumping, magnetic proximity, spin hall, and spin Seebeck effects Proposes unique solutions for low-power spintronic device applications where memory is closely integrated with logic Metallic Spintronic Devices aims to equip anyone who is serious about metallic spintronic devices with up-to-date design, modeling, and processing knowledge. It can be used either by an expert in the field or a graduate student in course curriculum.


Spintronics

Spintronics

Author: Tomasz Blachowicz

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2024-10-07

Total Pages: 387

ISBN-13: 3111383830

DOWNLOAD EBOOK

The up-dated 2nd edition starts from quantum mechanical and condensed matter foundations and introduces into the necessary theory behind spin electronics. Providing equations of spin diffusion, -evolution and -tunelling the authors give an overview of simulation of spin transport at the atomic scale and discuss devices such as spin valves, memory cells and hard disk heads.


Spintronics

Spintronics

Author: Tomasz Dietl

Publisher: Academic Press

Published: 2009-02-12

Total Pages: 549

ISBN-13: 0080914217

DOWNLOAD EBOOK

This new volume focuses on a new, exciting field of research: Spintronics, the area also known as spin-based electronics. The ultimate aim of researchers in this area is to develop new devices that exploit the spin of an electron instead of, or in addition to, its electronic charge. In recent years many groups worldwide have devoted huge efforts to research of spintronic materials, from their technology through characterization to modeling. The resultant explosion of papers in this field and the solid scientific results achieved justify the publication of this volume. Its goal is to summarize the current level of understanding and to highlight some key results and milestones that have been achieved to date. Semiconductor spintronics is expected to lead to a new generation of transistors, lasers and integrated magnetic sensors that can be used to create ultra-low power, high-speed memory, logic and photonic devices. In addition, development of novel devices such as spin-polarized light emitters, spin field effect transistors, integrated sensors and high-temperature electronics is anticipated. Spintronics has emerged as one of the fastest growing areas of research This text presents an in-depth examination of the most recent technological spintronic developments Includes contributions from leading scholars and industry experts


Spin Waves

Spin Waves

Author: Daniel D. Stancil

Publisher: Springer Science & Business Media

Published: 2009-04-05

Total Pages: 348

ISBN-13: 0387778659

DOWNLOAD EBOOK

This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.


Intelligent Computing

Intelligent Computing

Author: Kohei Arai

Publisher: Springer

Published: 2019-06-22

Total Pages: 1127

ISBN-13: 3030228711

DOWNLOAD EBOOK

This book presents the proceedings of the Computing Conference 2019, providing a comprehensive collection of chapters focusing on core areas of computing and their real-world applications. Computing is an extremely broad discipline, encompassing a range of specialized fields, each focusing on particular areas of technology and types of application, and the conference offered pioneering researchers, scientists, industrial engineers, and students from around the globe a platform to share new ideas and development experiences. Providing state-of-the-art intelligent methods and techniques for solving real- world problems, the book inspires further research and technological advances in this important area.


Handbook of Spintronics

Handbook of Spintronics

Author: Yongbing Xu

Publisher: Springer

Published: 2015-10-14

Total Pages: 0

ISBN-13: 9789400768918

DOWNLOAD EBOOK

Over two volumes and 1500 pages, the Handbook of Spintronics will cover all aspects of spintronics science and technology, including fundamental physics, materials properties and processing, established and emerging device technology and applications. Comprising 60 chapters from a large international team of leading researchers across academia and industry, the Handbook provides readers with an up-to-date and comprehensive review of this dynamic field of research. The opening chapters focus on the fundamental physical principles of spintronics in metals and semiconductors, including an introduction to spin quantum computing. Materials systems are then considered, with sections on metallic thin films and multilayers, magnetic tunnelling structures, hybrids, magnetic semiconductors and molecular spintronic materials. A separate section reviews the various characterisation methods appropriate to spintronics materials, including STM, spin-polarised photoemission, x-ray diffraction techniques and spin-polarised SEM. The third part of the Handbook contains chapters on the state of the art in device technology and applications, including spin valves, GMR and MTJ devices, MRAM technology, spin transistors and spin logic devices, spin torque devices, spin pumping and spin dynamics and other topics such as spin caloritronics. Each chapter considers the challenges faced by researchers in that area and contains some indications of the direction that future work in the field is likely to take. This reference work will be an essential and long-standing resource for the spintronics community.