Adversarial Machine Learning

Adversarial Machine Learning

Author: Yevgeniy Tu

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 152

ISBN-13: 3031015800

DOWNLOAD EBOOK

The increasing abundance of large high-quality datasets, combined with significant technical advances over the last several decades have made machine learning into a major tool employed across a broad array of tasks including vision, language, finance, and security. However, success has been accompanied with important new challenges: many applications of machine learning are adversarial in nature. Some are adversarial because they are safety critical, such as autonomous driving. An adversary in these applications can be a malicious party aimed at causing congestion or accidents, or may even model unusual situations that expose vulnerabilities in the prediction engine. Other applications are adversarial because their task and/or the data they use are. For example, an important class of problems in security involves detection, such as malware, spam, and intrusion detection. The use of machine learning for detecting malicious entities creates an incentive among adversaries to evade detection by changing their behavior or the content of malicius objects they develop. The field of adversarial machine learning has emerged to study vulnerabilities of machine learning approaches in adversarial settings and to develop techniques to make learning robust to adversarial manipulation. This book provides a technical overview of this field. After reviewing machine learning concepts and approaches, as well as common use cases of these in adversarial settings, we present a general categorization of attacks on machine learning. We then address two major categories of attacks and associated defenses: decision-time attacks, in which an adversary changes the nature of instances seen by a learned model at the time of prediction in order to cause errors, and poisoning or training time attacks, in which the actual training dataset is maliciously modified. In our final chapter devoted to technical content, we discuss recent techniques for attacks on deep learning, as well as approaches for improving robustness of deep neural networks. We conclude with a discussion of several important issues in the area of adversarial learning that in our view warrant further research. Given the increasing interest in the area of adversarial machine learning, we hope this book provides readers with the tools necessary to successfully engage in research and practice of machine learning in adversarial settings.


Machine Learning in Adversarial Settings

Machine Learning in Adversarial Settings

Author: Hossein Hosseini

Publisher:

Published: 2019

Total Pages: 111

ISBN-13:

DOWNLOAD EBOOK

Deep neural networks have achieved remarkable success over the last decade in a variety of tasks. Such models are, however, typically designed and developed with the implicit assumption that they will be deployed in benign settings. With the increasing use of learning systems in security-sensitive and safety-critical application, such as banking, medical diagnosis, and autonomous cars, it is important to study and evaluate their performance in adversarial settings. The security of machine learning systems has been studied from different perspectives. Learning models are subject to attacks at both training and test phases. The main threat at test time is evasion attack, in which the attacker subtly modifies input data such that a human observer would perceive the original content, but the model generates different outputs. Such inputs, known as adversarial examples, has been used to attack voice interfaces, face-recognition systems and text classifiers. The goal of this dissertation is to investigate the test-time vulnerabilities of machine learning systems in adversarial settings and develop robust defensive mechanisms. The dissertation covers two classes of models, 1) commercial ML products developed by Google, namely Perspective, Cloud Vision, and Cloud Video Intelligence APIs, and 2) state-of-the-art image classification algorithms. In both cases, we propose novel test-time attack algorithms and also present defense methods against such attacks.


Characterizing the Limits and Defenses of Machine Learning in Adversarial Settings

Characterizing the Limits and Defenses of Machine Learning in Adversarial Settings

Author: Nicolas Papernot

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Advances in machine learning (ML) in recent years have enabled a dizzying array of applications such as object recognition, autonomous systems, security diagnostics, and playing the game of Go. Machine learning is not only a new paradigm for building software and systems, it is bringing social disruption at scale. There is growing recognition that ML exposes new vulnerabilities in software systems, yet the technical communitys understanding of the nature and extent of these vulnerabilities remains limited. In this thesis, I focus my study on the integrity of ML models. Integrity refers here to the faithfulness of model predictions with respect to an expected outcome. This property is at the core of traditional machine learning evaluation, as demonstrated by the pervasiveness of metrics such as accuracy among practitioners. A large fraction of ML techniques were designed for benign execution environments. Yet, the presence of adversaries may invalidate some of these underlying assumptions by forcing a mismatch between the distributions on which the model is trained and tested. As ML is increasingly applied and being relied on for decision-making in critical applications like transportation or energy, the models produced are becoming a target for adversaries who have a strong incentive to force ML to mispredict. I explore the space of attacks against ML integrity at test time. Given full or limited access to a trained model, I devise strategies that modify the test data to create a worst-case drift between the training and test distributions. The implications of this part of my research is that an adversary with very weak access to a system, and little knowledge about the ML techniques it deploys, can nevertheless mount powerful attacks against such systems as long as she has the capability of interacting with it as an oracle: i.e., send inputs of the adversarys choice and observe the ML prediction. This systematic exposition of the poor generalization of ML models indicates the lack of reliable confidence estimates when the model is making predictions far from its training data. Hence, my efforts to increase the robustness of models to these adversarial manipulations strive to decrease the confidence of predictions made far from the training distribution. Informed by my progress on attacks operating in the black-box threat model, I first identify limitations to two defenses: defensive distillation and adversarial training. I then describe recent defensive efforts addressing these shortcomings. To this end, I introduce the Deep k-Nearest Neighbors classifier, which augments deep neural networks with an integrity check at test time. The approach compares internal representations produced by the deep neural network on test data with the ones learned on its training points. Using the labels of training points whose representations neighbor the test input across the deep neural networks layers, I estimate the nonconformity of the prediction with respect to the models training data. An application of conformal prediction methodology then paves the way for more reliable estimates of the models prediction credibility, i.e., how well the prediction is supported by training data. In turn, we distinguish legitimate test data with high credibility from adversarial data with low credibility. This research calls for future efforts to investigate the robustness of individual layers of deep neural networks rather than treating the model as a black-box. This aligns well with the modular nature of deep neural networks, which orchestrate simple computations to model complex functions. This also allows us to draw connections to other areas like interpretability in ML, which seeks to answer the question of: How can we provide an explanation for the model prediction to a human? Another by-product of this research direction is that I better distinguish vulnerabilities of ML models that are a consequence of the ML algorithms from those that can be explained by artifacts in the data.


Interpretable Machine Learning

Interpretable Machine Learning

Author: Christoph Molnar

Publisher: Lulu.com

Published: 2020

Total Pages: 320

ISBN-13: 0244768528

DOWNLOAD EBOOK

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.


Adversarial Machine Learning

Adversarial Machine Learning

Author: Anthony D. Joseph

Publisher: Cambridge University Press

Published: 2019-02-21

Total Pages: 341

ISBN-13: 1107043468

DOWNLOAD EBOOK

This study allows readers to get to grips with the conceptual tools and practical techniques for building robust machine learning in the face of adversaries.


Malware Detection

Malware Detection

Author: Mihai Christodorescu

Publisher: Springer Science & Business Media

Published: 2007-03-06

Total Pages: 307

ISBN-13: 0387445994

DOWNLOAD EBOOK

This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.


Machine Learning Techniques and Analytics for Cloud Security

Machine Learning Techniques and Analytics for Cloud Security

Author: Rajdeep Chakraborty

Publisher: John Wiley & Sons

Published: 2021-11-30

Total Pages: 484

ISBN-13: 1119764092

DOWNLOAD EBOOK

MACHINE LEARNING TECHNIQUES AND ANALYTICS FOR CLOUD SECURITY This book covers new methods, surveys, case studies, and policy with almost all machine learning techniques and analytics for cloud security solutions The aim of Machine Learning Techniques and Analytics for Cloud Security is to integrate machine learning approaches to meet various analytical issues in cloud security. Cloud security with ML has long-standing challenges that require methodological and theoretical handling. The conventional cryptography approach is less applied in resource-constrained devices. To solve these issues, the machine learning approach may be effectively used in providing security to the vast growing cloud environment. Machine learning algorithms can also be used to meet various cloud security issues, such as effective intrusion detection systems, zero-knowledge authentication systems, measures for passive attacks, protocols design, privacy system designs, applications, and many more. The book also contains case studies/projects outlining how to implement various security features using machine learning algorithms and analytics on existing cloud-based products in public, private and hybrid cloud respectively. Audience Research scholars and industry engineers in computer sciences, electrical and electronics engineering, machine learning, computer security, information technology, and cryptography.


Intelligent Security Systems

Intelligent Security Systems

Author: Leon Reznik

Publisher: John Wiley & Sons

Published: 2021-10-19

Total Pages: 372

ISBN-13: 1119771536

DOWNLOAD EBOOK

INTELLIGENT SECURITY SYSTEMS Dramatically improve your cybersecurity using AI and machine learning In Intelligent Security Systems, distinguished professor and computer scientist Dr. Leon Reznik delivers an expert synthesis of artificial intelligence, machine learning and data science techniques, applied to computer security to assist readers in hardening their computer systems against threats. Emphasizing practical and actionable strategies that can be immediately implemented by industry professionals and computer device’s owners, the author explains how to install and harden firewalls, intrusion detection systems, attack recognition tools, and malware protection systems. He also explains how to recognize and counter common hacking activities. This book bridges the gap between cybersecurity education and new data science programs, discussing how cutting-edge artificial intelligence and machine learning techniques can work for and against cybersecurity efforts. Intelligent Security Systems includes supplementary resources on an author-hosted website, such as classroom presentation slides, sample review, test and exam questions, and practice exercises to make the material contained practical and useful. The book also offers: A thorough introduction to computer security, artificial intelligence, and machine learning, including basic definitions and concepts like threats, vulnerabilities, risks, attacks, protection, and tools An exploration of firewall design and implementation, including firewall types and models, typical designs and configurations, and their limitations and problems Discussions of intrusion detection systems (IDS), including architecture topologies, components, and operational ranges, classification approaches, and machine learning techniques in IDS design A treatment of malware and vulnerabilities detection and protection, including malware classes, history, and development trends Perfect for undergraduate and graduate students in computer security, computer science and engineering, Intelligent Security Systems will also earn a place in the libraries of students and educators in information technology and data science, as well as professionals working in those fields.


Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies

Robust Machine Learning Algorithms and Systems for Detection and Mitigation of Adversarial Attacks and Anomalies

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2019-08-22

Total Pages: 83

ISBN-13: 0309496098

DOWNLOAD EBOOK

The Intelligence Community Studies Board (ICSB) of the National Academies of Sciences, Engineering, and Medicine convened a workshop on December 11â€"12, 2018, in Berkeley, California, to discuss robust machine learning algorithms and systems for the detection and mitigation of adversarial attacks and anomalies. This publication summarizes the presentations and discussions from the workshop.


Adversarial Machine Learning

Adversarial Machine Learning

Author: Aneesh Sreevallabh Chivukula

Publisher: Springer Nature

Published: 2023-03-06

Total Pages: 316

ISBN-13: 3030997723

DOWNLOAD EBOOK

A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways. In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed. We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantification of the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications. In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.