Machine Learning for Complex and Unmanned Systems

Machine Learning for Complex and Unmanned Systems

Author: Esteban Tlelo-Cuautle

Publisher:

Published: 2023-12

Total Pages: 0

ISBN-13: 9781032473307

DOWNLOAD EBOOK

"This book highlights applications that include machine learning methods to enhance new developments in complex and unmanned systems. The main topics covered under this title include: machine learning, artificial intelligence, cryptography, submarines, drones, security in healthcare, Internet of Things and robotics. This book can be used by graduate students, industrial and academic professionals to revise real case studies in applying machine learning in the areas of modeling, simulation and optimization of complex systems, cryptography, electronics, healthcare, control systems, Internet of Things, security, and unmanned systems such as submarines, drones and robots"--


Machine Learning for Complex and Unmanned Systems

Machine Learning for Complex and Unmanned Systems

Author: Jose Martinez-Carranza

Publisher: CRC Press

Published: 2024-02-21

Total Pages: 386

ISBN-13: 1003827438

DOWNLOAD EBOOK

This book highlights applications that include machine learning methods to enhance new developments in complex and unmanned systems. The contents are organized from the applications requiring few methods to the ones combining different methods and discussing their development and hardware/software implementation. The book includes two parts: the first one collects machine learning applications in complex systems, mainly discussing developments highlighting their modeling and simulation, and hardware implementation. The second part collects applications of machine learning in unmanned systems including optimization and case studies in submarines, drones, and robots. The chapters discuss miscellaneous applications required by both complex and unmanned systems, in the areas of artificial intelligence, cryptography, embedded hardware, electronics, the Internet of Things, and healthcare. Each chapter provides guidelines and details of different methods that can be reproduced in hardware/software and discusses future research. Features Provides details of applications using machine learning methods to solve real problems in engineering Discusses new developments in the areas of complex and unmanned systems Includes details of hardware/software implementation of machine learning methods Includes examples of applications of different machine learning methods for future lines for research in the hot topic areas of submarines, drones, robots, cryptography, electronics, healthcare, and the Internet of Things This book can be used by graduate students, industrial and academic professionals to examine real case studies in applying machine learning in the areas of modeling, simulation, and optimization of complex systems, cryptography, electronics, healthcare, control systems, Internet of Things, security, and unmanned systems such as submarines, drones, and robots.


Deep Learning for Unmanned Systems

Deep Learning for Unmanned Systems

Author: Anis Koubaa

Publisher: Springer Nature

Published: 2021-10-01

Total Pages: 731

ISBN-13: 3030779394

DOWNLOAD EBOOK

This book is used at the graduate or advanced undergraduate level and many others. Manned and unmanned ground, aerial and marine vehicles enable many promising and revolutionary civilian and military applications that will change our life in the near future. These applications include, but are not limited to, surveillance, search and rescue, environment monitoring, infrastructure monitoring, self-driving cars, contactless last-mile delivery vehicles, autonomous ships, precision agriculture and transmission line inspection to name just a few. These vehicles will benefit from advances of deep learning as a subfield of machine learning able to endow these vehicles with different capability such as perception, situation awareness, planning and intelligent control. Deep learning models also have the ability to generate actionable insights into the complex structures of large data sets. In recent years, deep learning research has received an increasing amount of attention from researchers in academia, government laboratories and industry. These research activities have borne some fruit in tackling some of the challenging problems of manned and unmanned ground, aerial and marine vehicles that are still open. Moreover, deep learning methods have been recently actively developed in other areas of machine learning, including reinforcement training and transfer/meta-learning, whereas standard, deep learning methods such as recent neural network (RNN) and coevolutionary neural networks (CNN). The book is primarily meant for researchers from academia and industry, who are working on in the research areas such as engineering, control engineering, robotics, mechatronics, biomedical engineering, mechanical engineering and computer science. The book chapters deal with the recent research problems in the areas of reinforcement learning-based control of UAVs and deep learning for unmanned aerial systems (UAS) The book chapters present various techniques of deep learning for robotic applications. The book chapters contain a good literature survey with a long list of references. The book chapters are well written with a good exposition of the research problem, methodology, block diagrams and mathematical techniques. The book chapters are lucidly illustrated with numerical examples and simulations. The book chapters discuss details of applications and future research areas.


Intelligent Autonomous Drones with Cognitive Deep Learning

Intelligent Autonomous Drones with Cognitive Deep Learning

Author: David Allen Blubaugh

Publisher: Apress

Published: 2022-11-01

Total Pages: 0

ISBN-13: 9781484268025

DOWNLOAD EBOOK

What is an artificial intelligence (AI)-enabled drone and what can it do? Are AI-enabled drones better than human-controlled drones? This book will answer these questions and more, and empower you to develop your own AI-enabled drone. You'll progress from a list of specifications and requirements, in small and iterative steps, which will then lead to the development of Unified Modeling Language (UML) diagrams based in part to the standards established by for the Robotic Operating System (ROS). The ROS architecture has been used to develop land-based drones. This will serve as a reference model for the software architecture of unmanned systems. Using this approach you'll be able to develop a fully autonomous drone that incorporates object-oriented design and cognitive deep learning systems that adapts to multiple simulation environments. These multiple simulation environments will also allow you to further build public trust in the safety of artificial intelligence within drones and small UAS. Ultimately, you'll be able to build a complex system using the standards developed, and create other intelligent systems of similar complexity and capability. Intelligent Autonomous Drones with Cognitive Deep Learning uniquely addresses both deep learning and cognitive deep learning for developing near autonomous drones. What You’ll Learn Examine the necessary specifications and requirements for AI enabled drones for near-real time and near fully autonomous drones Look at software and hardware requirements Understand unified modeling language (UML) and real-time UML for design Study deep learning neural networks for pattern recognition Review geo-spatial Information for the development of detailed mission planning within these hostile environments Who This Book Is For Primarily for engineers, computer science graduate students, or even a skilled hobbyist. The target readers have the willingness to learn and extend the topic of intelligent autonomous drones. They should have a willingness to explore exciting engineering projects that are limited only by their imagination. As far as the technical requirements are concerned, they must have an intermediate understanding of object-oriented programming and design.


Engineering Applications of Neural Networks

Engineering Applications of Neural Networks

Author: John Macintyre

Publisher: Springer

Published: 2019-05-14

Total Pages: 554

ISBN-13: 3030202577

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 19th International Conference on Engineering Applications of Neural Networks, EANN 2019, held in Xersonisos, Crete, Greece, in May 2019. The 35 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on AI in energy management - industrial applications; biomedical - bioinformatics modeling; classification - learning; deep learning; deep learning - convolutional ANN; fuzzy - vulnerability - navigation modeling; machine learning modeling - optimization; ML - DL financial modeling; security - anomaly detection; 1st PEINT workshop.


Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022)

Proceedings of 2022 International Conference on Autonomous Unmanned Systems (ICAUS 2022)

Author: Wenxing Fu

Publisher: Springer Nature

Published: 2023-03-10

Total Pages: 3985

ISBN-13: 981990479X

DOWNLOAD EBOOK

This book includes original, peer-reviewed research papers from the ICAUS 2022, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2022 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.


Unmanned Aerial Systems

Unmanned Aerial Systems

Author: Anis Koubaa

Publisher: Academic Press

Published: 2021-01-21

Total Pages: 652

ISBN-13: 0128202777

DOWNLOAD EBOOK

Unmanned Aerial Systems: Theoretical Foundation and Applications presents some of the latest innovative approaches to drones from the point-of-view of dynamic modeling, system analysis, optimization, control, communications, 3D-mapping, search and rescue, surveillance, farmland and construction monitoring, and more. With the emergence of low-cost UAS, a vast array of research works in academia and products in the industrial sectors have evolved. The book covers the safe operation of UAS, including, but not limited to, fundamental design, mission and path planning, control theory, computer vision, artificial intelligence, applications requirements, and more. This book provides a unique reference of the state-of-the-art research and development of unmanned aerial systems, making it an essential resource for researchers, instructors and practitioners. - Covers some of the most innovative approaches to drones - Provides the latest state-of-the-art research and development surrounding unmanned aerial systems - Presents a comprehensive reference on unmanned aerial systems, with a focus on cutting-edge technologies and recent research trends in the area


Drones in Smart-Cities

Drones in Smart-Cities

Author: Fadi Al-Turjman

Publisher: Elsevier

Published: 2020-06-04

Total Pages: 240

ISBN-13: 0128204303

DOWNLOAD EBOOK

Drones in Smart-Cities: Security and Performance is the first book dedicated to drones in smart cities, helping address the many research challenges in bringing UAVs into practice. The book incorporates insights from the latest research in Internet of Things, big data, and cloud computing, 5G, and other communication technologies. It examines the design and implementation of UAV, focusing on data delivery, performability, and security. Intended for researchers, engineers, and practitioners, Drones in Smart-Cities: Security and Performance combines the technical aspects with academic theory to help implement the smart city vision around the globe. - Addresses UAV and IoT for smart cities applications - Examines topics as UAV safety, challenges, localization methods. QoS, simulation tools, and more - Collect the relevant knowledge in one resource, saving research time and effort


Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021)

Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021)

Author: Meiping Wu

Publisher: Springer Nature

Published: 2022-03-18

Total Pages: 3575

ISBN-13: 9811694923

DOWNLOAD EBOOK

This book includes original, peer-reviewed research papers from the ICAUS 2021, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2021 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.