Artificial Intelligence in Industrial Applications

Artificial Intelligence in Industrial Applications

Author: Steven Lawrence Fernandes

Publisher: Springer Nature

Published: 2021-12-07

Total Pages: 203

ISBN-13: 3030853837

DOWNLOAD EBOOK

This book highlights the analytics and optimization issues in industry, to propose new approaches, and to present applications of innovative approaches in real facilities. In the past few decades there has been an exponential rise in the application of artificial intelligence for solving complex and intricate problems arising in industrial domain. The versatility of these techniques have made them a favorite among scientists and researchers working in diverse areas. The book is edited to serve a broad readership, including computer scientists, medical professionals, and mathematicians interested in studying computational intelligence and their applications. It will also be helpful for researchers, graduate and undergraduate students with an interest in the fields of Artificial Intelligence and Industrial problems. This book will be a useful resource for researchers, academicians as well as professionals interested in the highly interdisciplinary field of Artificial Intelligence.


Artificial Intelligence and Industrial Applications

Artificial Intelligence and Industrial Applications

Author: Tawfik Masrour

Publisher: Springer Nature

Published: 2020-07-18

Total Pages: 341

ISBN-13: 3030539709

DOWNLOAD EBOOK

This book gathers selected papers from Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by ENSAM-Meknes at Moulay Ismail University, Morocco. The 29 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as digital twin, multiagent systems, deep learning, image processing and analysis, control, prediction, modeling, optimization and design, as well as AI applications in industry, health, energy, agriculture, and education. The book is intended for AI experts, offering them a valuable overview and global outlook for the future, and highlights a wealth of innovative ideas and recent, important advances in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.


Artificial Intelligence and Industrial Applications

Artificial Intelligence and Industrial Applications

Author: Tawfik Masrour

Publisher: Springer Nature

Published: 2020-09-01

Total Pages: 442

ISBN-13: 3030511863

DOWNLOAD EBOOK

This book gathers the refereed proceedings of the Artificial Intelligence and Industrial Applications (A2IA’2020), the first installment of an annual international conference organized by the ENSAM-Meknes at Moulay Ismail University, Morocco. The 30 papers presented here were carefully reviewed and selected from 141 submissions by an international scientific committee. They address various aspects of artificial intelligence such as smart manufacturing, smart maintenance, smart supply chain management, supervised learning, unsupervised learning, reinforcement learning, graph-based and semi-supervised learning, neural networks, deep learning, planning and optimization, and other AI applications. The book is intended for AI experts, offering them a valuable overview of the status quo and a global outlook for the future, with many new and innovative ideas and recent important developments in AI applications, both of a foundational and practical nature. It will also appeal to non-experts who are curious about this timely and important subject.


Machine Learning Algorithms for Industrial Applications

Machine Learning Algorithms for Industrial Applications

Author: Santosh Kumar Das

Publisher: Springer Nature

Published: 2020-07-18

Total Pages: 321

ISBN-13: 303050641X

DOWNLOAD EBOOK

This book explores several problems and their solutions regarding data analysis and prediction for industrial applications. Machine learning is a prominent topic in modern industries: its influence can be felt in many aspects of everyday life, as the world rapidly embraces big data and data analytics. Accordingly, there is a pressing need for novel and innovative algorithms to help us find effective solutions in industrial application areas such as media, healthcare, travel, finance, and retail. In all of these areas, data is the crucial parameter, and the main key to unlocking the value of industry. The book presents a range of intelligent algorithms that can be used to filter useful information in the above-mentioned application areas and efficiently solve particular problems. Its main objective is to raise awareness for this important field among students, researchers, and industrial practitioners.


Machine Learning in Industry

Machine Learning in Industry

Author: Shubhabrata Datta

Publisher: Springer Nature

Published: 2021-07-24

Total Pages: 202

ISBN-13: 3030758478

DOWNLOAD EBOOK

This book covers different machine learning techniques such as artificial neural network, support vector machine, rough set theory and deep learning. It points out the difference between the techniques and their suitability for specific applications. This book also describes different applications of machine learning techniques for industrial problems. The book includes several case studies, helping researchers in academia and industries aspiring to use machine learning for solving practical industrial problems.


Smart Systems for Industrial Applications

Smart Systems for Industrial Applications

Author: C. Venkatesh

Publisher: John Wiley & Sons

Published: 2022-01-07

Total Pages: 311

ISBN-13: 1119762049

DOWNLOAD EBOOK

SMART SYSTEMS FOR INDUSTRIAL APPLICATIONS The prime objective of this book is to provide an insight into the role and advancements of artificial intelligence in electrical systems and future challenges. The book covers a broad range of topics about AI from a multidisciplinary point of view, starting with its history and continuing on to theories about artificial vs. human intelligence, concepts, and regulations concerning AI, human-machine distribution of power and control, delegation of decisions, the social and economic impact of AI, etc. The prominent role that AI plays in society by connecting people through technologies is highlighted in this book. It also covers key aspects of various AI applications in electrical systems in order to enable growth in electrical engineering. The impact that AI has on social and economic factors is also examined from various perspectives. Moreover, many intriguing aspects of AI techniques in different domains are covered such as e-learning, healthcare, smart grid, virtual assistance, etc. Audience The book will be of interest to researchers and postgraduate students in artificial intelligence, electrical and electronic engineering, as well as those engineers working in the application areas such as healthcare, energy systems, education, and others.


Industrial Machine Learning

Industrial Machine Learning

Author: Andreas François Vermeulen

Publisher: Apress

Published: 2019-11-30

Total Pages: 652

ISBN-13: 1484253167

DOWNLOAD EBOOK

Understand the industrialization of machine learning (ML) and take the first steps toward identifying and generating the transformational disruptors of artificial intelligence (AI). You will learn to apply ML to data lakes in various industries, supplying data professionals with the advanced skills required to handle the future of data engineering and data science. Data lakes currently generated by worldwide industrialized business activities are projected to reach 35 zettabytes (ZB) as the Fourth Industrial Revolution produces an exponential increase of volume, velocity, variety, variability, veracity, visualization, and value. Industrialization of ML evolves from AI and studying pattern recognition against the increasingly unstructured resource stored in data lakes. Industrial Machine Learning supplies advanced, yet practical examples in different industries, including finance, public safety, health care, transportation, manufactory, supply chain, 3D printing, education, research, and data science. The book covers: supervised learning, unsupervised learning, reinforcement learning, evolutionary computing principles, soft robotics disruptors, and hard robotics disruptors. What You Will Learn Generate and identify transformational disruptors of artificial intelligence (AI) Understand the field of machine learning (ML) and apply it to handle big data and process the data lakes in your environment Hone the skills required to handle the future of data engineering and data science Who This Book Is For Intermediate to expert level professionals in the fields of data science, data engineering, machine learning, and data management


Industrial AI

Industrial AI

Author: Jay Lee

Publisher: Springer Nature

Published: 2020-02-07

Total Pages: 176

ISBN-13: 9811521441

DOWNLOAD EBOOK

This book introduces Industrial AI in multiple dimensions. Industrial AI is a systematic discipline which focuses on developing, validating and deploying various machine learning algorithms for industrial applications with sustainable performance. Combined with the state-of-the-art sensing, communication and big data analytics platforms, a systematic Industrial AI methodology will allow integration of physical systems with computational models. The concept of Industrial AI is in infancy stage and may encompass the collective use of technologies such as Internet of Things, Cyber-Physical Systems and Big Data Analytics under the Industry 4.0 initiative where embedded computing devices, smart objects and the physical environment interact with each other to reach intended goals. A broad range of Industries including automotive, aerospace, healthcare, semiconductors, energy, transportation, mining, construction, and industrial automation could harness the power of Industrial AI to gain insights into the invisible relationship of the operation conditions and further use that insight to optimize their uptime, productivity and efficiency of their operations. In terms of predictive maintenance, Industrial AI can detect incipient changes in the system and predict the remains useful life and further to optimize maintenance tasks to avoid disruption to operations.


Applications of Artificial Intelligence in Process Systems Engineering

Applications of Artificial Intelligence in Process Systems Engineering

Author: Jingzheng Ren

Publisher: Elsevier

Published: 2021-06-05

Total Pages: 542

ISBN-13: 012821743X

DOWNLOAD EBOOK

Applications of Artificial Intelligence in Process Systems Engineering offers a broad perspective on the issues related to artificial intelligence technologies and their applications in chemical and process engineering. The book comprehensively introduces the methodology and applications of AI technologies in process systems engineering, making it an indispensable reference for researchers and students. As chemical processes and systems are usually non-linear and complex, thus making it challenging to apply AI methods and technologies, this book is an ideal resource on emerging areas such as cloud computing, big data, the industrial Internet of Things and deep learning. With process systems engineering's potential to become one of the driving forces for the development of AI technologies, this book covers all the right bases. - Explains the concept of machine learning, deep learning and state-of-the-art intelligent algorithms - Discusses AI-based applications in process modeling and simulation, process integration and optimization, process control, and fault detection and diagnosis - Gives direction to future development trends of AI technologies in chemical and process engineering