Artificial Intelligence for Materials Science

Artificial Intelligence for Materials Science

Author: Yuan Cheng

Publisher: Springer Nature

Published: 2021-03-26

Total Pages: 231

ISBN-13: 3030683109

DOWNLOAD EBOOK

Machine learning methods have lowered the cost of exploring new structures of unknown compounds, and can be used to predict reasonable expectations and subsequently validated by experimental results. As new insights and several elaborative tools have been developed for materials science and engineering in recent years, it is an appropriate time to present a book covering recent progress in this field. Searchable and interactive databases can promote research on emerging materials. Recently, databases containing a large number of high-quality materials properties for new advanced materials discovery have been developed. These approaches are set to make a significant impact on human life and, with numerous commercial developments emerging, will become a major academic topic in the coming years. This authoritative and comprehensive book will be of interest to both existing researchers in this field as well as others in the materials science community who wish to take advantage of these powerful techniques. The book offers a global spread of authors, from USA, Canada, UK, Japan, France, Russia, China and Singapore, who are all world recognized experts in their separate areas. With content relevant to both academic and commercial points of view, and offering an accessible overview of recent progress and potential future directions, the book will interest graduate students, postgraduate researchers, and consultants and industrial engineers.


Accelerated Materials Discovery

Accelerated Materials Discovery

Author: Phil De Luna

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-02-21

Total Pages: 235

ISBN-13: 3110733250

DOWNLOAD EBOOK

Typical timelines to go from discovery to impact in the advanced materials sector are between 10 to 30 years. Advances in robotics and artificial intelligence are poised to accelerate the discovery and development of new materials dramatically. This book is a primer for any materials scientist looking to future-proof their careers and get ahead of the disruption that artificial intelligence and robotic automation is just starting to unleash. It is meant to be an overview of how we can use these disruptive technologies to augment and supercharge our abilities to discover new materials that will solve world’s biggest challenges. Written by world leading experts on accelerated materials discovery from academia (UC Berkeley, Caltech, UBC, Cornell, etc.), industry (Toyota Research Institute, Citrine Informatics) and national labs (National Research Council of Canada, Lawrence Berkeley National Labs).


Information Science for Materials Discovery and Design

Information Science for Materials Discovery and Design

Author: Turab Lookman

Publisher: Springer

Published: 2015-12-12

Total Pages: 316

ISBN-13: 331923871X

DOWNLOAD EBOOK

This book deals with an information-driven approach to plan materials discovery and design, iterative learning. The authors present contrasting but complementary approaches, such as those based on high throughput calculations, combinatorial experiments or data driven discovery, together with machine-learning methods. Similarly, statistical methods successfully applied in other fields, such as biosciences, are presented. The content spans from materials science to information science to reflect the cross-disciplinary nature of the field. A perspective is presented that offers a paradigm (codesign loop for materials design) to involve iteratively learning from experiments and calculations to develop materials with optimum properties. Such a loop requires the elements of incorporating domain materials knowledge, a database of descriptors (the genes), a surrogate or statistical model developed to predict a given property with uncertainties, performing adaptive experimental design to guide the next experiment or calculation and aspects of high throughput calculations as well as experiments. The book is about manufacturing with the aim to halving the time to discover and design new materials. Accelerating discovery relies on using large databases, computation, and mathematics in the material sciences in a manner similar to the way used to in the Human Genome Initiative. Novel approaches are therefore called to explore the enormous phase space presented by complex materials and processes. To achieve the desired performance gains, a predictive capability is needed to guide experiments and computations in the most fruitful directions by reducing not successful trials. Despite advances in computation and experimental techniques, generating vast arrays of data; without a clear way of linkage to models, the full value of data driven discovery cannot be realized. Hence, along with experimental, theoretical and computational materials science, we need to add a “fourth leg’’ to our toolkit to make the “Materials Genome'' a reality, the science of Materials Informatics.


Machine learning accelerated discovery of high transmittance in (K0.5Na0.5)NbO3-based ceramics

Machine learning accelerated discovery of high transmittance in (K0.5Na0.5)NbO3-based ceramics

Author: Bowen Ma

Publisher: OAE Publishing Inc.

Published: 2023-06-13

Total Pages: 16

ISBN-13:

DOWNLOAD EBOOK

High optical transmittance (T%) has always been an important indicator of transparent-ferroelectric ceramics for optoelectronic coupling. However, the pathway of pursuing high transparency has been at the experimental trial-and-error stage over the past decades, manifesting major drawbacks of being time-consuming and resource-wasting. The present work introduces a machine learning (ML) accelerated development of highly transparent-ferroelectrics by taking potassium-sodium niobate (KNN)-based ceramics as the model material. It is highlighted that by using a small data set of 118 sample data and four key features, we predict the T% of un-synthesized KNN-based ceramics and evaluate the importance of key features. Meanwhile, the screened (K0.5Na0.5)0.956Tb0.004Ba0.04NbO3 ceramics were successfully realized by the conventional solid-state synthesis, and the experimental measured T% is in full agreement with the predicted results, exhibiting a satisfactory high T% of ~78% at 800 nm. In addition, ML is also used to explore the best experimental parameters, and the prediction results of T% are particularly sensitive to changes in sintering temperature (ST). Eventually, the predicted optimal ST is highly consistent with the experimental one. This study constructs a new avenue for exploring high T% ferroelectric KNN ceramics based on ML, ascertaining optimal process parameters, and guiding the development of other transparent-ferroelectrics in optoelectronic fields.


Materials Discovery and Design

Materials Discovery and Design

Author: Turab Lookman

Publisher: Springer

Published: 2018-09-22

Total Pages: 266

ISBN-13: 3319994654

DOWNLOAD EBOOK

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.


Computational Materials System Design

Computational Materials System Design

Author: Dongwon Shin

Publisher: Springer

Published: 2017-11-10

Total Pages: 239

ISBN-13: 3319682806

DOWNLOAD EBOOK

This book provides state-of-the-art computational approaches for accelerating materials discovery, synthesis, and processing using thermodynamics and kinetics. The authors deliver an overview of current practical computational tools for materials design in the field. They describe ways to integrate thermodynamics and kinetics and how the two can supplement each other.


Energy Storage and Conversion Materials

Energy Storage and Conversion Materials

Author: Stephen Skinner

Publisher: Royal Society of Chemistry

Published: 2019-11-22

Total Pages: 262

ISBN-13: 1788010906

DOWNLOAD EBOOK

Energy Storage and Conversion Materials describes the application of inorganic materials in the storage and conversion of energy.


Quantum Chemistry in the Age of Machine Learning

Quantum Chemistry in the Age of Machine Learning

Author: Pavlo O. Dral

Publisher: Elsevier

Published: 2022-09-16

Total Pages: 702

ISBN-13: 0323886043

DOWNLOAD EBOOK

Quantum chemistry is simulating atomistic systems according to the laws of quantum mechanics, and such simulations are essential for our understanding of the world and for technological progress. Machine learning revolutionizes quantum chemistry by increasing simulation speed and accuracy and obtaining new insights. However, for nonspecialists, learning about this vast field is a formidable challenge. Quantum Chemistry in the Age of Machine Learning covers this exciting field in detail, ranging from basic concepts to comprehensive methodological details to providing detailed codes and hands-on tutorials. Such an approach helps readers get a quick overview of existing techniques and provides an opportunity to learn the intricacies and inner workings of state-of-the-art methods. The book describes the underlying concepts of machine learning and quantum chemistry, machine learning potentials and learning of other quantum chemical properties, machine learning-improved quantum chemical methods, analysis of Big Data from simulations, and materials design with machine learning. Drawing on the expertise of a team of specialist contributors, this book serves as a valuable guide for both aspiring beginners and specialists in this exciting field. - Compiles advances of machine learning in quantum chemistry across different areas into a single resource - Provides insights into the underlying concepts of machine learning techniques that are relevant to quantum chemistry - Describes, in detail, the current state-of-the-art machine learning-based methods in quantum chemistry


Machine Learning

Machine Learning

Author: Kevin P. Murphy

Publisher: MIT Press

Published: 2012-08-24

Total Pages: 1102

ISBN-13: 0262018020

DOWNLOAD EBOOK

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today's Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.


Computational Materials Discovery

Computational Materials Discovery

Author: Artem Oganov

Publisher: Royal Society of Chemistry

Published: 2018-10-30

Total Pages: 470

ISBN-13: 1782629610

DOWNLOAD EBOOK

A unique and timely book providing an overview of both the methodologies and applications of computational materials design.