Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Author: Leonid Shaikhet

Publisher: Springer Science & Business Media

Published: 2013-03-29

Total Pages: 352

ISBN-13: 3319001019

DOWNLOAD EBOOK

Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.


Lyapunov Functionals and Stability of Stochastic Difference Equations

Lyapunov Functionals and Stability of Stochastic Difference Equations

Author: Leonid Shaikhet

Publisher: Springer Science & Business Media

Published: 2011-06-02

Total Pages: 374

ISBN-13: 085729685X

DOWNLOAD EBOOK

Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.


Advances in Stability Theory at the End of the 20th Century

Advances in Stability Theory at the End of the 20th Century

Author: A.A. Martynyuk

Publisher: CRC Press

Published: 2002-10-03

Total Pages: 366

ISBN-13: 0203166574

DOWNLOAD EBOOK

This volume presents surveys and research papers on various aspects of modern stability theory, including discussions on modern applications of the theory, all contributed by experts in the field. The volume consists of four sections that explore the following directions in the development of stability theory: progress in stability theory by first


Stochastic Stability of Differential Equations

Stochastic Stability of Differential Equations

Author: Rafail Khasminskii

Publisher: Springer Science & Business Media

Published: 2011-09-20

Total Pages: 353

ISBN-13: 3642232809

DOWNLOAD EBOOK

Since the publication of the first edition of the present volume in 1980, the stochastic stability of differential equations has become a very popular subject of research in mathematics and engineering. To date exact formulas for the Lyapunov exponent, the criteria for the moment and almost sure stability, and for the existence of stationary and periodic solutions of stochastic differential equations have been widely used in the literature. In this updated volume readers will find important new results on the moment Lyapunov exponent, stability index and some other fields, obtained after publication of the first edition, and a significantly expanded bibliography. This volume provides a solid foundation for students in graduate courses in mathematics and its applications. It is also useful for those researchers who would like to learn more about this subject, to start their research in this area or to study the properties of concrete mechanical systems subjected to random perturbations.


Stochastic Stability of Differential Equations in Abstract Spaces

Stochastic Stability of Differential Equations in Abstract Spaces

Author: Kai Liu

Publisher: Cambridge University Press

Published: 2019-05-02

Total Pages: 277

ISBN-13: 1108626491

DOWNLOAD EBOOK

The stability of stochastic differential equations in abstract, mainly Hilbert, spaces receives a unified treatment in this self-contained book. It covers basic theory as well as computational techniques for handling the stochastic stability of systems from mathematical, physical and biological problems. Its core material is divided into three parts devoted respectively to the stochastic stability of linear systems, non-linear systems, and time-delay systems. The focus is on stability of stochastic dynamical processes affected by white noise, which are described by partial differential equations such as the Navier–Stokes equations. A range of mathematicians and scientists, including those involved in numerical computation, will find this book useful. It is also ideal for engineers working on stochastic systems and their control, and researchers in mathematical physics or biology.


Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems

Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems

Author: V. Lakshmikantham

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 182

ISBN-13: 9401579393

DOWNLOAD EBOOK

One service mathematics has rendered the 'Et moi, "', si j'avait su comment en revenir, je n'y serais point all".' human race. It has put common sense back where it belongs, on the topmost shelf next Jules Verne to the dusty canister labelled 'discarded non sense'. The series is divergent; therefore we may be able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics . .'; 'One service logic has rendered com puter science . .'; 'One service category theory has rendered mathematics . .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series.


(In-)Stability of Differential Inclusions

(In-)Stability of Differential Inclusions

Author: Philipp Braun

Publisher: Springer Nature

Published: 2021-07-12

Total Pages: 123

ISBN-13: 303076317X

DOWNLOAD EBOOK

Lyapunov methods have been and are still one of the main tools to analyze the stability properties of dynamical systems. In this monograph, Lyapunov results characterizing the stability and stability of the origin of differential inclusions are reviewed. To characterize instability and destabilizability, Lyapunov-like functions, called Chetaev and control Chetaev functions in the monograph, are introduced. Based on their definition and by mirroring existing results on stability, analogue results for instability are derived. Moreover, by looking at the dynamics of a differential inclusion in backward time, similarities and differences between stability of the origin in forward time and instability in backward time, and vice versa, are discussed. Similarly, the invariance of the stability and instability properties of the equilibria of differential equations with respect to scaling are summarized. As a final result, ideas combining control Lyapunov and control Chetaev functions to simultaneously guarantee stability, i.e., convergence, and instability, i.e., avoidance, are outlined. The work is addressed at researchers working in control as well as graduate students in control engineering and applied mathematics.