High-Frequency Integrated Circuits

High-Frequency Integrated Circuits

Author: Sorin Voinigescu

Publisher: Cambridge University Press

Published: 2013-02-28

Total Pages: 921

ISBN-13: 0521873029

DOWNLOAD EBOOK

A transistor-level, design-intensive overview of high speed and high frequency monolithic integrated circuits for wireless and broadband systems from 2 GHz to 200 GHz, this comprehensive text covers high-speed, RF, mm-wave, and optical fibre circuits using nanoscale CMOS, SiGe BiCMOS, and III-V technologies. Step-by-step design methodologies, end-of chapter problems, and practical simulation and design projects are provided, making this an ideal resource for senior undergraduate and graduate courses in circuit design. With an emphasis on device-circuit topology interaction and optimization, it gives circuit designers and students alike an in-depth understanding of device structures and process limitations affecting circuit performance.


Low Power VCO Design in CMOS

Low Power VCO Design in CMOS

Author: Marc Tiebout

Publisher: Springer Science & Business Media

Published: 2006-01-25

Total Pages: 126

ISBN-13: 354029256X

DOWNLOAD EBOOK

This work covers the design of CMOS fully integrated low power low phase noise voltage controlled oscillators for telecommunication or datacommuni- tion systems. The need for low power is obvious, as mobile wireless telecommunications are battery operated. As wireless telecommunication systems use oscillators in frequency synthesizers for frequency translation, the selectivity and signal to noise ratio of receivers and transmitters depend heavily on the low phase noise performance of the implemented oscillators. Datacommunication s- tems need low jitter, the time-domain equivalent of low phase noise, clocks for data detection and recovery. The power consumption is less critical. The need for multi-band and multi-mode systems pushes the high-integration of telecommunication systems. This is o?ered by sub-micron CMOS feat- ing digital ?exibility. The recent crisis in telecommunication clearly shows that mobile hand-sets became mass-market high-volume consumer products, where low-cost is of prime importance. This need for low-cost products - livens tremendously research towards CMOS alternatives for the bipolar or BiCMOS solutions in use today.


Analysis and Design of Quadrature Oscillators

Analysis and Design of Quadrature Oscillators

Author: Luis B. Oliveira

Publisher: Springer Science & Business Media

Published: 2008-07-08

Total Pages: 162

ISBN-13: 1402085168

DOWNLOAD EBOOK

Modern RF receivers and transmitters require quadrature oscillators with accurate quadrature and low phase-noise. Existing literature is dedicated mainly to single oscillators, and is strongly biased towards LC oscillators. This book is devoted to quadrature oscillatorsand presents adetailed comparative study ofLC and RCosc- lators, both at architectural and at circuit levels. It is shown that in cross-coupled RC oscillators both the quadrature error and phase-noise are reduced, whereas in LC - cillators the coupling decreases the quadrature error, but increases the phase-noise. Thus, quadrature RC oscillators can be a practical alternative to LC oscillators, - pecially when area and cost are to be minimized. The main topics of the book are: cross-coupled LC quasi-sinusoidal oscillators, cross-coupled RC relaxation oscillators, a quadrature RC oscillator-mixer, and t- integrator oscillators. The effect of mismatches on the phase-error and the pha- noise are thoroughly investigated. The book includes many experimental results, obtained from different integrated circuit prototypes, in the GHz range. A structured design approach is followed: a technology independent study, with ideal blocks, is performed initially, and then the circuit level design is addressed. This book can be used in advanced courses on RF circuit design. In addition to post-graduate students and lecturers, this book will be of interest to design engineers and researchers in this area.


Low-Noise Low-Power Design for Phase-Locked Loops

Low-Noise Low-Power Design for Phase-Locked Loops

Author: Feng Zhao

Publisher: Springer

Published: 2014-11-25

Total Pages: 106

ISBN-13: 3319122002

DOWNLOAD EBOOK

This book introduces low-noise and low-power design techniques for phase-locked loops and their building blocks. It summarizes the noise reduction techniques for fractional-N PLL design and introduces a novel capacitive-quadrature coupling technique for multi-phase signal generation. The capacitive-coupling technique has been validated through silicon implementation and can provide low phase-noise and accurate I-Q phase matching, with low power consumption from a super low supply voltage. Readers will be enabled to pick one of the most suitable QVCO circuit structures for their own designs, without additional effort to look for the optimal circuit structure and device parameters.


The Designer's Guide to High-Purity Oscillators

The Designer's Guide to High-Purity Oscillators

Author: Emad Eldin Hegazi

Publisher: Springer Science & Business Media

Published: 2006-07-18

Total Pages: 212

ISBN-13: 0387233652

DOWNLOAD EBOOK

try to predict it using mathematical expressions. His heuristic model without mathematical proof is almost universally accepted. However, it entails a c- cuit specific noise factor that is not known a priori and so is not predictive. In this work, we attempt to address the topic of oscillator design from a diff- ent perspective. By introducing a new paradigm that accurately captures the subtleties of phase noise we try to answer the question: 'why do oscillators behave in a particular way?' and 'what can be done to build an optimum design?' It is also hoped that the paradigm is useful in other areas of circuit design such as frequency synthesis and clock recovery. In Chapter 1, a general introduction and motivation to the subject is presented. Chapter 2 summarizes the fundamentals of phase noise and timing jitter and discusses earlier works on oscillator's phase noise analysis. Chapter 3 and Chapter 4 analyze the physical mechanisms behind phase noise generation in current-biased and Colpitts oscillators. Chapter 5 discusses design trade-offs and new techniques in LC oscillator design that allows optimal design. Chapter 6 and Chapter 7 discuss a topic that is typically ignored in oscillator design. That is flicker noise in LC oscillators. Finally, Chapter 8 is dedicated to the complete analysis of the role of varactors both in tuning and AM-FM noise conversion.


Transformer-Based Design Techniques for Oscillators and Frequency Dividers

Transformer-Based Design Techniques for Oscillators and Frequency Dividers

Author: Howard Cam Luong

Publisher: Springer

Published: 2015-10-07

Total Pages: 214

ISBN-13: 3319158740

DOWNLOAD EBOOK

This book provides in-depth coverage of transformer-based design techniques that enable CMOS oscillators and frequency dividers to achieve state-of-the-art performance. Design, optimization, and measured performance of oscillators and frequency dividers for different applications are discussed in detail, focusing on not only ultra-low supply voltage but also ultra-wide frequency tuning range and locking range. This book will be an invaluable reference for anyone working or interested in CMOS radio-frequency or mm-Wave integrated circuits and systems.


RF CMOS Oscillators for Modern Wireless Applications

RF CMOS Oscillators for Modern Wireless Applications

Author: Masoud Babaie

Publisher:

Published: 2024-10-21

Total Pages: 0

ISBN-13: 9788770043519

DOWNLOAD EBOOK

The main goal of this book is to bring forth the exciting and innovative RF oscillator structures that demonstrate better phase noise performance, lower cost, and higher power efficiency than currently achievable.


Phaselock Techniques

Phaselock Techniques

Author: Floyd M. Gardner

Publisher: John Wiley & Sons

Published: 2005-08-08

Total Pages: 449

ISBN-13: 0471732680

DOWNLOAD EBOOK

A greatly revised and expanded account of phaselock technology The Third Edition of this landmark book presents new developments in the field of phaselock loops, some of which have never been published until now. Established concepts are reviewed critically and recommendations are offered for improved formulations. The work reflects the author's own research and many years of hands-on experience with phaselock loops. Reflecting the myriad of phaselock loops that are now found in electronic devices such as televisions, computers, radios, and cell phones, the book offers readers much new material, including: * Revised and expanded coverage of transfer functions * Two chapters on phase noise * Two chapters examining digital phaselock loops * A chapter on charge-pump phaselock loops * Expanded discussion of phase detectors and of oscillators * A chapter on anomalous phaselocking * A chapter on graphical aids, including Bode plots, root locus plots, and Nichols charts As in the previous editions, the focus of the book is on underlying principles, which remain valid despite technological advances. Extensive references guide readers to additional information to help them explore particular topics in greater depth. Phaselock Techniques, Third Edition is intended for practicing engineers, researchers, and graduate students. This critically acclaimed book has been thoroughly updated with new information and expanded for greater depth.


60-GHz CMOS Phase-Locked Loops

60-GHz CMOS Phase-Locked Loops

Author: Hammad M. Cheema

Publisher: Springer Science & Business Media

Published: 2010-06-22

Total Pages: 190

ISBN-13: 9048192803

DOWNLOAD EBOOK

Abstract This chapter lays the foundation for the work presented in latter chapters. The potential of 60 GHz frequency bands for high data rate wireless transfer is discussed and promising applications are enlisted. Furthermore, the challenges related to 60 GHz IC design are presented and the chapter concludes with an outline of the book. Keywords Wireless communication 60 GHz Millimeter wave integrated circuit design Phase-locked loop CMOS Communication technology has revolutionized our way of living over the last century. Since Marconi’s transatlantic wireless experiment in 1901, there has been tremendous growth in wireless communication evolving from spark-gap telegraphy to today’s mobile phones equipped with Internet access and multimedia capabilities. The omnipresence of wireless communication can be observed in widespread use of cellular telephony, short-range communication through wireless local area networks and personal area networks, wireless sensors and many others. The frequency spectrum from 1 to 6 GHz accommodates the vast majority of current wireless standards and applications. Coupled with the availability of low cost radio frequency (RF) components and mature integrated circuit (IC) techn- ogies, rapid expansion and implementation of these systems is witnessed. The downside of this expansion is the resulting scarcity of available bandwidth and allowable transmit powers. In addition, stringent limitations on spectrum and energy emissions have been enforced by regulatory bodies to avoid interference between different wireless systems.


Phase Noise in Signal Sources

Phase Noise in Signal Sources

Author: W. P. Robins

Publisher: IET

Published: 1984

Total Pages: 340

ISBN-13: 9780863410260

DOWNLOAD EBOOK

This book contains a thorough treatment of phase noise, its relationship to thermal noise and associated subjects such as frequency stability. The design of low phase noise signal sources, including oscillators and synthesisers, is explained and in many cases the measured phase noise characteristics are compared with the theoretical predictions. Full theoretical treatments are combined with physical explanations, helpful comments, examples of manufactured equipment and practical tips. Overall system performance degradations due to unwanted phase noise are fully analysed for radar systems and for both analogue and digital communications systems. Specifications for the acceptable phase noise performance of signal sources to be used in such systems are derived after allowing for both technical and economic optimisation. The mature engineer whose mathematics may be somewhat rusty will find that every effort has been made to use the lowest level of mathematical sophistication that is compatible with a full analysis and every line of each mathematical argument has been set out so that the book may be read and understood even in an armchair. Due to a novel approach to the analytical treatment of narrow band noise, the book is simple to understand while simultaneously carrying the analysis further in several areas than any existing publication.