Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

Low-Enriched Uranium Fuel Design with Two-Dimensional Grading for the High Flux Isotope Reactor

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

An engineering design study of the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel is ongoing at Oak Ridge National Laboratory. The computational models developed during fiscal year 2010 to search for an LEU fuel design that would meet the requirements for the conversion and the results obtained with these models are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating HEU fuel core. The results obtained indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations under the assumption that the operating power for the reactor fueled with LEU can be increased from the current value of 85 MW to 100 MW.


Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

Fuel Grading Study on a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

An engineering design study that would enable the conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium fuel is ongoing at Oak Ridge National Laboratory. The computational models used to search for a low-enriched uranium (LEU) fuel design that would meet the requirements for the conversion study, and the recent results obtained with these models during FY 2009, are documented and discussed in this report. Estimates of relevant reactor performance parameters for the LEU fuel core are presented and compared with the corresponding data for the currently operating high-enriched uranium fuel core. These studies indicate that the LEU fuel design would maintain the current performance of the HFIR with respect to the neutron flux to the central target region, reflector, and beam tube locations.


Reference (Axially Graded) Low Enriched Uranium Fuel Design for the High Flux Isotope Reactor (HFIR).

Reference (Axially Graded) Low Enriched Uranium Fuel Design for the High Flux Isotope Reactor (HFIR).

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

During the past five years, staff at the Oak Ridge National Laboratory (ORNL) have studied the issue of whether the HFIR could be converted to low enriched uranium (LEU) fuel without degrading the performance of the reactor. Using state-of-the-art reactor physics methods and behind-the-state-of-the-art thermal hydraulics methods, the staff have developed fuel plate designs (HFIR uses two types of fuel plates) that are believed to meet physics and thermal hydraulic criteria provided the reactor power is increased from 85 to 100 MW. The paper will present a defense of the results by explaining the design and validation process. A discussion of the requirements for showing applicability of analyses to approval for loading the fuel to HFIR lead test core irradiation currently scheduled for 2016 will be provided. Finally, the potential benefits of upgrading thermal hydraulics methods will be discussed.


Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2006

Author:

Publisher:

Published: 2006

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Neutronics and thermal-hydraulics studies show that, for equivalent operating power [85 MW(t)], a low-enriched uranium (LEU) fuel cycle based on uranium-10 wt % molybdenum (U-10Mo) metal foil with radially, "continuously graded" fuel meat thickness results in a 15% reduction in peak thermal flux in the beryllium reflector of the High Flux Isotope Reactor (HFIR) as compared to the current highly enriched uranium (HEU) cycle. The uranium-235 content of the LEU core is almost twice the amount of the HEU core when the length of the fuel cycle is kept the same for both fuels. Because the uranium-238 content of an LEU core is a factor of 4 greater than the uranium-235 content, the LEU HFIR core would weigh 30% more than the HEU core. A minimum U-10Mo foil thickness of 84 [mu]m is required to compensate for power peaking in the LEU core although this value could be increased significantly without much penalty. The maximum U-10Mo foil thickness is 457[mu]m. Annual plutonium production from fueling the HFIR with LEU is predicted to be 2 kg. For dispersion fuels, the operating power for HFIR would be reduced considerably below 85 MW due to thermal considerations and due to the requirement of a 26-d fuel cycle. If an acceptable fuel can be developed, it is estimated that $140 M would be required to implement the conversion of the HFIR site at Oak Ridge National Laboratory from an HEU fuel cycle to an LEU fuel cycle. To complete the conversion by fiscal year 2014 would require that all fuel development and qualification be completed by the end of fiscal year 2009. Technological development areas that could increase the operating power of HFIR are identified as areas for study in the future.


Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

Preliminary Evaluation of Alternate Designs for HFIR Low-Enriched Uranium Fuel

Author:

Publisher:

Published: 2014

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory (ORNL) as part of an effort sponsored by the U.S. Department of Energy's Global Threat Reduction Initiative (GTRI)/Reduced Enrichment for Research and Test Reactors (RERTR) program. The fuel type selected by the program for the conversion of the five high-power research reactors in the U.S. that still use HEU fuel is a new U-Mo monolithic fuel. Studies by ORNL have previously indicated that HFIR can be successfully converted using the new fuel provided (1) the reactor power can be increased from 85 MW to 100 MW and (2) the fuel can be fabricated to a specific reference design. Fabrication techniques for the new fuel are under development by the program but are still immature, especially for the?complex? aspects of the HFIR fuel design. In FY 2012, the program underwent a major shift in focus to emphasize developing and qualifying processes for the fabrication of reliable and affordable LEU fuel. In support of this new focus and in an effort to ensure that the HFIR fuel design is as suitable for reliable fabrication as possible, ORNL undertook the present study to propose and evaluate several alternative design features. These features include (1) eliminating the fuel zone axial contouring in the previous reference design by substituting a permanent neutron absorber in the lower unfueled region of all of the fuel plates, (2) relocating the burnable neutron absorber from the fuel plates of the inner fuel element to the side plates of the inner fuel element (the fuel plates of the outer fuel element do not contain a burnable absorber), (3) relocating the fuel zone inside the fuel plate to be centered on the centerline of the depth of the plate, and (4) reshaping the radial contour of the relocated fuel zone to be symmetric about this centerline. The present studies used current analytical tools to evaluate the various alternate designs for cycle length, scientific performance (e.g., neutron scattering), and steady-state and transient thermal performance using both safety limit and nominal parameter assumptions. The studies concluded that a new reference design combining a permanent absorber in the lower unfueled region of all of the fuel plates, a burnable absorber in the inner element side plates, and a relocated and reshaped (but still radially contoured) fuel zone will allow successful conversion of HFIR. Future collaboration with the program will reveal whether the new reference design can be fabricated reliably and affordably. Following this feedback, additional studies using state-of-the-art developmental analytical tools are proposed to optimize the design of the fuel zone radial contour and the amount and location of both types of neutron absorbers to further flatten thermal peaks while maximizing the performance of the reactor.


The Role of COMSOL Toward a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

The Role of COMSOL Toward a Low-Enriched Uranium Fuel Design for the High Flux Isotope Reactor

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Design and safety analyses are underway to convert the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) from a high-enriched uranium (HEU) fuel to a low-enriched uranium (LEU) fuel. The primary constraint for the project is that the overall fuel plate dimensions and the current neutron flux performance must remain unchanged. This allows minimal impact on the facility and cost for the conversion, and provides transparency to the HFIR customer base and research projects that depend on the facility for isotopes and neutron flux. As a consequence, the LEU design demands more accuracy and less margin in the analysis efforts than the original design. Several technical disciplines are required to complete this conversion including nuclear reactor physics, heat transfer, fluid dynamics, structural mechanics, fuel fabrication, and engineering design. The role of COMSOL is to provide the fully-coupled 3D multi-physics analysis for heat transfer, turbulent flow, and structural mechanics of the fuel plates and flow channels. A goal is for COMSOL to simulate the entire fuel element array of fuel plates (171 inner, 369 outer). This paper describes the progress that has been made toward development of benchmark validation models of the existing HEU inner-element fuel plates.


DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

DESIGN STUDY FOR A LOW-ENRICHED URANIUM CORE FOR THE HIGH FLUX ISOTOPE REACTOR, ANNUAL REPORT FOR FY 2010

Author:

Publisher:

Published: 2011

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report documents progress made during FY 2010 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in performance to users from the current level. Studies are reported of support to a thermal hydraulic test loop design, the implementation of finite element, thermal hydraulic analysis capability, and infrastructure tasks at HFIR to upgrade the facility for operation at 100 MW. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. Continuing development in the definition of the fuel fabrication process is described.


Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2009

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2009

Author:

Publisher:

Published: 2010

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report documents progress made during FY 2009 in studies of converting the High Flux Isotope Reactor (HFIR) from high enriched uranium (HEU) fuel to low enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Studies are reported of the application of a silicon coating to surrogates for spheres of uranium-molybdenum alloy. A discussion of difficulties with preparing a fuel specification for the uranium-molybdenum alloy is provided. A description of the progress in developing a finite element thermal hydraulics model of the LEU core is provided.


PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL? EXTENDING CYCLE BURNUP.

PREPARING THE HIGH FLUX ISOTOPE REACTOR FOR CONVERSION TO LOW ENRICHED URANIUM FUEL? EXTENDING CYCLE BURNUP.

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Reactor performance studies have been completed for conceptual plate designs and show that maintaining reactor performance while converting HFIR from high enriched to low enriched uranium (20 wt % 235U) fuel requires extending the end-of-life burnup value for HFIR fuel from the current nominal value of 2200 MWD to 2600 MWD. The current fuel fabrication procedure is discussed and changes that would be required to this procedure are identified. Design and safety related analyses that are required for the certification of a new fuel are identified. Qualification tests and comments regarding the regulatory approval process are provided along with a conceptual schedule.


Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

Design Study for a Low-Enriched Uranium Core for the High Flux Isotope Reactor, Annual Report for FY 2008

Author:

Publisher:

Published: 2009

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

This report documents progress made during FY 2008 in studies of converting the High Flux Isotope Reactor (HFIR) from highly enriched uranium (HEU) fuel to low-enriched uranium (LEU) fuel. Conversion from HEU to LEU will require a change in fuel form from uranium oxide to a uranium-molybdenum alloy. With axial and radial grading of the fuel foil and an increase in reactor power to 100 MW, calculations indicate that the HFIR can be operated with LEU fuel with no degradation in reactor performance from the current level. Results of selected benchmark studies imply that calculations of LEU performance are accurate. Scoping experiments with various manufacturing methods for forming the LEU alloy profile are presented.