Loops in Group Theory and Lie Theory

Loops in Group Theory and Lie Theory

Author: Péter T. Nagy

Publisher: Walter de Gruyter

Published: 2002

Total Pages: 384

ISBN-13: 9783110170108

DOWNLOAD EBOOK

In this book the theory of binary systems is considered as a part of group theory and, in particular, within the framework of Lie groups. The novelty is the consequent treatment of topological and differentiable loops as topological and differentiable sections in Lie groups. The interplay of methods and tools from group theory, differential geometry and topology, symmetric spaces, topological geometry, and the theory of foliations is what gives a special flavour to the results presented in this book. It is the first monograph devoted to the study of global loops. So far books on differentiable loops deal with local loops only. This theory can only be used partially for the theory of global loops since non-associative local structures have, in general, no global forms. The text is addressed to researchers in non-associative algebra and foundations of geometry. It should prove enlightening to a broad range of readers, including mathematicians working in group theory, the theory of Lie groups, in differential and topological geometry, and in algebraic groups. The authors have produced a text that is suitable not only for a graduate course, but also for selfstudy in the subjectby interested graduate students. Moreover, the material presented can be used for lectures and seminars in algebra, topological algebra and geometry.


Loops in Group Theory and Lie Theory

Loops in Group Theory and Lie Theory

Author: Péter Nagy

Publisher: Walter de Gruyter

Published: 2011-06-24

Total Pages: 377

ISBN-13: 3110900580

DOWNLOAD EBOOK

In this book the theory of binary systems is considered as a part of group theory and, in particular, within the framework of Lie groups. The novelty is the consequent treatment of topological and differentiable loops as topological and differentiable sections in Lie groups. The interplay of methods and tools from group theory, differential geometry and topology, symmetric spaces, topological geometry, and the theory of foliations is what gives a special flavour to the results presented in this book. It is the first monograph devoted to the study of global loops. So far books on differentiable loops deal with local loops only. This theory can only be used partially for the theory of global loops since non-associative local structures have, in general, no global forms. The text is addressed to researchers in non-associative algebra and foundations of geometry. It should prove enlightening to a broad range of readers, including mathematicians working in group theory, the theory of Lie groups, in differential and topological geometry, and in algebraic groups. The authors have produced a text that is suitable not only for a graduate course, but also for selfstudy in the subjectby interested graduate students. Moreover, the material presented can be used for lectures and seminars in algebra, topological algebra and geometry.


Langlands Correspondence for Loop Groups

Langlands Correspondence for Loop Groups

Author: Edward Frenkel

Publisher: Cambridge University Press

Published: 2007-06-28

Total Pages: 5

ISBN-13: 0521854431

DOWNLOAD EBOOK

The first account of local geometric Langlands Correspondence, a new area of mathematical physics developed by the author.


Lectures on Lie Groups

Lectures on Lie Groups

Author: J. F. Adams

Publisher: University of Chicago Press

Published: 1982

Total Pages: 192

ISBN-13: 0226005305

DOWNLOAD EBOOK

"[Lectures in Lie Groups] fulfills its aim admirably and should be a useful reference for any mathematician who would like to learn the basic results for compact Lie groups. . . . The book is a well written basic text [and Adams] has done a service to the mathematical community."—Irving Kaplansky


Introduction to Representation Theory

Introduction to Representation Theory

Author: Pavel I. Etingof

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 240

ISBN-13: 0821853511

DOWNLOAD EBOOK

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.


Group Theory

Group Theory

Author: Predrag Cvitanović

Publisher: Princeton University Press

Published: 2008-07-01

Total Pages: 278

ISBN-13: 1400837677

DOWNLOAD EBOOK

If classical Lie groups preserve bilinear vector norms, what Lie groups preserve trilinear, quadrilinear, and higher order invariants? Answering this question from a fresh and original perspective, Predrag Cvitanovic takes the reader on the amazing, four-thousand-diagram journey through the theory of Lie groups. This book is the first to systematically develop, explain, and apply diagrammatic projection operators to construct all semi-simple Lie algebras, both classical and exceptional. The invariant tensors are presented in a somewhat unconventional, but in recent years widely used, "birdtracks" notation inspired by the Feynman diagrams of quantum field theory. Notably, invariant tensor diagrams replace algebraic reasoning in carrying out all group-theoretic computations. The diagrammatic approach is particularly effective in evaluating complicated coefficients and group weights, and revealing symmetries hidden by conventional algebraic or index notations. The book covers most topics needed in applications from this new perspective: permutations, Young projection operators, spinorial representations, Casimir operators, and Dynkin indices. Beyond this well-traveled territory, more exotic vistas open up, such as "negative dimensional" relations between various groups and their representations. The most intriguing result of classifying primitive invariants is the emergence of all exceptional Lie groups in a single family, and the attendant pattern of exceptional and classical Lie groups, the so-called Magic Triangle. Written in a lively and personable style, the book is aimed at researchers and graduate students in theoretical physics and mathematics.


Loop Spaces, Characteristic Classes and Geometric Quantization

Loop Spaces, Characteristic Classes and Geometric Quantization

Author: Jean-Luc Brylinski

Publisher: Springer Science & Business Media

Published: 2009-12-30

Total Pages: 318

ISBN-13: 0817647317

DOWNLOAD EBOOK

This book examines the differential geometry of manifolds, loop spaces, line bundles and groupoids, and the relations of this geometry to mathematical physics. Applications presented in the book involve anomaly line bundles on loop spaces and anomaly functionals, central extensions of loop groups, Kähler geometry of the space of knots, and Cheeger--Chern--Simons secondary characteristics classes. It also covers the Dirac monopole and Dirac’s quantization of the electrical charge.


Counterexamples in Topology

Counterexamples in Topology

Author: Lynn Arthur Steen

Publisher: Courier Corporation

Published: 2013-04-22

Total Pages: 274

ISBN-13: 0486319296

DOWNLOAD EBOOK

Over 140 examples, preceded by a succinct exposition of general topology and basic terminology. Each example treated as a whole. Numerous problems and exercises correlated with examples. 1978 edition. Bibliography.


Expansion in Finite Simple Groups of Lie Type

Expansion in Finite Simple Groups of Lie Type

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2015-04-16

Total Pages: 319

ISBN-13: 1470421968

DOWNLOAD EBOOK

Expander graphs are an important tool in theoretical computer science, geometric group theory, probability, and number theory. Furthermore, the techniques used to rigorously establish the expansion property of a graph draw from such diverse areas of mathematics as representation theory, algebraic geometry, and arithmetic combinatorics. This text focuses on the latter topic in the important case of Cayley graphs on finite groups of Lie type, developing tools such as Kazhdan's property (T), quasirandomness, product estimates, escape from subvarieties, and the Balog-Szemerédi-Gowers lemma. Applications to the affine sieve of Bourgain, Gamburd, and Sarnak are also given. The material is largely self-contained, with additional sections on the general theory of expanders, spectral theory, Lie theory, and the Lang-Weil bound, as well as numerous exercises and other optional material.


Hilbert's Fifth Problem and Related Topics

Hilbert's Fifth Problem and Related Topics

Author: Terence Tao

Publisher: American Mathematical Soc.

Published: 2014-07-18

Total Pages: 354

ISBN-13: 147041564X

DOWNLOAD EBOOK

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.