Local Structural Characterisation

Local Structural Characterisation

Author: Duncan W. Bruce

Publisher: John Wiley & Sons

Published: 2013-07-31

Total Pages: 298

ISBN-13: 1118681924

DOWNLOAD EBOOK

Inorganic materials are at the heart of many contemporary real-world applications, in electronic devices, drug delivery, bio-inspired materials and energy storage and transport. In order to underpin novel synthesis strategies both to facilitate these applications and to encourage new ones, a thorough review of current and emerging techniques for materials characterisation is needed. Examining important techniques that allow investigation of the structures of inorganic materials on the local atomic scale, Local Structural Characterisation discusses: Solid-State NMR Spectroscopy X-Ray Absorption and Emission Spectroscopy Neutrons and Neutron Spectroscopy EPR Spectroscopy of Inorganic Materials Analysis of Functional Materials by X-Ray Photoelectron Spectroscopy This addition to the Inorganic Materials Series provides a detailed and thorough review of these spectroscopic techniques and emphasises the interplay between chemical synthesis and physical characterisation.


Structural Characterization Techniques

Structural Characterization Techniques

Author: Lorenzo Malavasi

Publisher: CRC Press

Published: 2016-10-14

Total Pages: 356

ISBN-13: 1315341212

DOWNLOAD EBOOK

This book presents state-of-the-art contributions related to advanced structural characterization techniques in the field of clean energy materials with particular emphasis on solid oxide fuel cells and hydrogen storage materials. It describes several diffraction and spectroscopic techniques for the investigation of both average and local structures with several examples of the most recent materials for clean energy applications. It is the first authoritative collection of contributions on the importance of the application of the most advanced structural techniques to shed light on the properties and mechanisms of materials currently investigated for the use in alternative energy devices. The book provides key techniques for ex situ and in situ investigation of clean energy materials and, hence, is an essential guide for researchers working on the structural analysis of advanced materials.


Structural Characterization Techniques

Structural Characterization Techniques

Author: Lorenzo Malavasi

Publisher: CRC Press

Published: 2016-10-14

Total Pages: 263

ISBN-13: 9814669350

DOWNLOAD EBOOK

This book presents state-of-the-art contributions related to advanced structural characterization techniques in the field of clean energy materials with particular emphasis on solid oxide fuel cells and hydrogen storage materials. It describes several diffraction and spectroscopic techniques for the investigation of both average and local structures with several examples of the most recent materials for clean energy applications. It is the first authoritative collection of contributions on the importance of the application of the most advanced structural techniques to shed light on the properties and mechanisms of materials currently investigated for the use in alternative energy devices. The book provides key techniques for ex situ and in situ investigation of clean energy materials and, hence, is an essential guide for researchers working on the structural analysis of advanced materials.


From Semiconductors to Proteins: Beyond the Average Structure

From Semiconductors to Proteins: Beyond the Average Structure

Author: S.J.L. Billinge

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 294

ISBN-13: 1461506131

DOWNLOAD EBOOK

This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science, and engineering, with length scales ranging from Angstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M.F. Thorpe, Series Editor E-mail: [email protected] East Lansing, Michigan, November 200 I v PREFACE The study of the atomic structure of crystalline materials began at the beginning of the twentieth century with the discovery by Max von Laue and by W.H. and W.L. Bragg that crystals diffract x-rays. At that time, even the existence of atoms was controversial.


Structure from Diffraction Methods

Structure from Diffraction Methods

Author: Duncan W. Bruce

Publisher: John Wiley & Sons

Published: 2014-06-12

Total Pages: 354

ISBN-13: 1118695712

DOWNLOAD EBOOK

Inorganic materials show a diverse range of important properties that are desirable for many contemporary, real-world applications. Good examples include recyclable battery cathode materials for energy storage and transport, porous solids for capture and storage of gases and molecular complexes for use in electronic devices. An understanding of the function of these materials is necessary in order to optimise their behaviour for real applications, hence the importance of 'structure–property relationships'. The chapters presented in this volume deal with recent advances in the characterisation of crystalline materials. They include some familiar diffraction methods, thoroughly updated with modern advances. Also included are techniques that can now probe details of the three-dimensional arrangements of atoms in nanocrystalline solids, allowing aspects of disorder to be studied. Small-angle scattering, a technique that is often overlooked, can probe both ordered and disordered structures of materials at longer length scales than those probed by powder diffraction methods. Addressing both physical principals and recent advances in their applications, Structure from Diffraction Methods covers: Powder Diffraction X-Ray and Neutron Single-Crystal Diffraction PDF Analysis of Nanoparticles Electron Crystallography Small-Angle Scattering Ideal as a complementary reference work to other volumes in the series (Local Structural Characterisation and Multi Length-Scale Characterisation), or as an examination of the specific characterisation techniques in their own right, Structure from Diffraction Methods is a valuable addition to the Inorganic Materials Series.


Charge Density and Structural Characterization of Thermoelectric Materials

Charge Density and Structural Characterization of Thermoelectric Materials

Author: R. Saravanan

Publisher: Materials Research Forum LLC

Published: 2016-06-01

Total Pages: 182

ISBN-13: 194529101X

DOWNLOAD EBOOK

Thermoelectric materials permit the direct conversion of temperature differences into electric energy, and vice versa. They are therefore of highest technological interest in applications such as solid state coolers, waste heat recovery, sensors and detectors, and power generators including remote power generation. Thermoelectric materials are often called “environmentally green”, and for good reasons. Not only can they help generate electrical energy from waste gases as they are generated in such processes as home heating, industrial fabrication and automotive motion. In cooling applications they eliminate the use of chemical refrigerant gases. Moreover, as thermoelectric conversion devices have no moving parts, they operate silently and have a very long life expectancy. The only current drawback of these devices is their poor efficiency. Scientists all over the world are therefore studying the structural, thermoelectric, charge-density and magnetic properties of the most promising types of these materials at the atomic and electronic level. In addition to providing an introduction to the field, the main objective of this book is to present the results of the growth and structural characterization of thermoelectric materials that are of high current interest; including Mg2Si, PbTe, Bi1-xSbx, Bi2Te3, Sb2Te3, Sn1-xGexTe and InSb.


Characterization of Nanoencapsulated Food Ingredients

Characterization of Nanoencapsulated Food Ingredients

Author:

Publisher: Academic Press

Published: 2020-03-07

Total Pages: 698

ISBN-13: 0128156686

DOWNLOAD EBOOK

Characterization of Nanoencapsulated Food Ingredients, Volume Four in the Nanoencapsulation in the Food Industry series, introduces some of the common instrumental analysis and characterization methods for the evaluation of nanocarriers and nanoencapsulated ingredients in terms of their morphology, size distribution, surface charge and composition, appearance, physicochemical and rheological properties, and antioxidant activity. Divided in five sections, the book covers the qualitative and quantitative properties of nanoencapsulated food ingredients by different characterization techniques, besides correlating nanocarrier behavior to their physicochemical and functional properties. Authored by a team of global experts in the fields of nano- and microencapsulation of food, nutraceutical, and pharmaceutical ingredients, this title is of great value to those engaged in the various fields of nanoencapsulation and nanodelivery systems. - Shows how different properties of nanoencapsulated food ingredients can be analyzed - Presents the mechanism of each characterization technique - Investigates how the analytical results can be understood with nanoencapsulated ingredients


Characterization of Semiconductor Heterostructures and Nanostructures

Characterization of Semiconductor Heterostructures and Nanostructures

Author: Giovanni Agostini

Publisher: Newnes

Published: 2013-04-11

Total Pages: 829

ISBN-13: 044459549X

DOWNLOAD EBOOK

Characterization of Semiconductor Heterostructures and Nanostructures is structured so that each chapter is devoted to a specific characterization technique used in the understanding of the properties (structural, physical, chemical, electrical etc..) of semiconductor quantum wells and superlattices. An additional chapter is devoted to ab initio modeling. The book has two basic aims. The first is educational, providing the basic concepts of each of the selected techniques with an approach understandable by advanced students in Physics, Chemistry, Material Science, Engineering, Nanotechnology. The second aim is to provide a selected set of examples from the recent literature of the TOP results obtained with the specific technique in understanding the properties of semiconductor heterostructures and nanostructures. Each chapter has this double structure: the first part devoted to explain the basic concepts, and the second to the discussion of the most peculiar and innovative examples. The topic of quantum wells, wires and dots should be seen as a pretext of applying top level characterization techniques in understanding the structural, electronic etc properties of matter at the nanometer (and even sub-nanometer) scale. In this respect it is an essential reference in the much broader, and extremely hot, field of Nanotechnology. Comprehensive collection of the most powerful characterization techniques for semiconductors heterostructures and nanostructures Most of the chapters are authored by scientists that are world-wide among the top-ten in publication ranking of the specific field Each chapter starts with a didactic introduction on the technique The second part of each chapters deals with a selection of top examples highlighting the power of the specific technique to analyse the properties of semiconductors heterostructures and nanostructures


Zeolites in Catalysis

Zeolites in Catalysis

Author: Jiří Čejka

Publisher: Royal Society of Chemistry

Published: 2017-06-07

Total Pages: 547

ISBN-13: 1782627847

DOWNLOAD EBOOK

Accessible references for researchers and industrialists in this exciting field, covering both developments and applications of catalysis.