Local Heat Transfer and Recovery Temperatures on a Yawed Cylinder at a Mach Number of 4.15 and High Reynolds Numbers

Local Heat Transfer and Recovery Temperatures on a Yawed Cylinder at a Mach Number of 4.15 and High Reynolds Numbers

Author: Ivan E. Beckwith

Publisher:

Published: 1961

Total Pages: 25

ISBN-13:

DOWNLOAD EBOOK

Local heat transfer, equilibrium temperatures, and pressure have been measured on a circular cylinder for yaw angles from 0° to 60° and Reynolds numbers from 1X106 to 4X106. Increasing the yaw angle from 0° to 40° generally caused large increases in local heat-transfer coefficients followed by a decrease as the yaw angle was increased to 60°. The level of heating rates and the type if chordwise distribution indicated that a flow mechanism different from the conventional transitional boundary layer may exist for the intermediate yaw angles.


Computational Fluid Mechanics and Heat Transfer, Third Edition

Computational Fluid Mechanics and Heat Transfer, Third Edition

Author: Richard H. Pletcher

Publisher: CRC Press

Published: 2012-08-30

Total Pages: 777

ISBN-13: 1591690374

DOWNLOAD EBOOK

Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.


Free-flight Measurements of Aerodynamic Heat Transfer to Mach Number 3.9 and of Drag to Mach Number 6.9 of a Fin-stabilized Cone-cylinder Configuration

Free-flight Measurements of Aerodynamic Heat Transfer to Mach Number 3.9 and of Drag to Mach Number 6.9 of a Fin-stabilized Cone-cylinder Configuration

Author: Charles B. Rumsey

Publisher:

Published: 1955

Total Pages: 26

ISBN-13:

DOWNLOAD EBOOK

Aerodynamic-heat-transfer measurements have been made at a station on the 10 degree total angle conical nose of a rocket-propelled model at flight Mach numbers of 1.4 to 3.9. The corresponding values of local Reynolds number varied from 18,000,000 to 46,000,000 and the ratio of skin temperature to local static temperature varied from 1.2 to 2.4. The experimental data, reduced to Stanton number, were in fair agreement with values predicted by Van Driest's theory for heat transfer on a cone with turbulent flow from the nose tip.


Measurements of Aerodynamic Heat Transfer and Boundary-layer Transition on a 10° Cone in Free Flight at Supersonic Mach Numbers Up to 5.9

Measurements of Aerodynamic Heat Transfer and Boundary-layer Transition on a 10° Cone in Free Flight at Supersonic Mach Numbers Up to 5.9

Author: Charles B. Rumsey

Publisher:

Published: 1956

Total Pages: 42

ISBN-13:

DOWNLOAD EBOOK

Abstract: Aerodynamic heat-transfer measurements were at six stations on the 40-inch-long 10° total-angle conical nose of a rocket-propelled model which was flight tested at Mach numbers up to 5.9. The range of local Reynolds number was from 6.6 x 106 to 55.2 x 106. Laminar, transitional, and turbulent heat-transfer coefficients were measured, and, in general, the laminar and turbulent measurements were in good agreement with theory for cones. Experimental transition Reynolds numbers varied from less than 8.5 x 106 to 19.4 x 106. At a relatively constant ratio of wall temperature to local static temperature near 1.2, the transition Reynolds number increased from 9.2 x 106 to 19.4 x 106 as Mach number increased from 1.57 to 3.38. At Mach numbers near 3.7, the transition Reynolds number decreased as the skin temperature increased toward adiabatic wall temperatures.