Improving How Universities Teach Science

Improving How Universities Teach Science

Author: Carl Wieman

Publisher: Harvard University Press

Published: 2017-05-22

Total Pages: 179

ISBN-13: 0674978927

DOWNLOAD EBOOK

Too many universities remain wedded to outmoded ways of teaching science in spite of extensive research showing that there are much more effective methods. Too few departments ask whether what happens in their lecture halls is effective at helping students to learn and how they can encourage their faculty to teach better. But real change is possible, and Carl Wieman shows us how it can be brought about. Improving How Universities Teach Science draws on Wieman’s unparalleled experience to provide a blueprint for educators seeking sustainable improvements in science teaching. Wieman created the Science Education Initiative (SEI), a program implemented across thirteen science departments at the universities of Colorado and British Columbia, to support the widespread adoption of the best research-based approaches to science teaching. The program’s data show that in the most successful departments 90 percent of faculty adopted better methods. Wieman identifies what factors helped and hindered the adoption of good teaching methods. He also gives detailed, effective, and tested strategies for departments and institutions to measure and improve the quality of their teaching while limiting the demands on faculty time. Among all of the commentary addressing shortcomings in higher education, Wieman’s lessons on improving teaching and learning stand out. His analysis and solutions are not limited to just one lecture hall or course but deal with changing entire departments and universities. For those who want to improve how universities teach science to the next generation, Wieman’s work is a critical first step.


Scientific Teaching

Scientific Teaching

Author: Jo Handelsman

Publisher: Macmillan

Published: 2007

Total Pages: 208

ISBN-13: 9781429201889

DOWNLOAD EBOOK

Seasoned classroom veterans, pre-tenured faculty, and neophyte teaching assistants alike will find this book invaluable. HHMI Professor Jo Handelsman and her colleagues at the Wisconsin Program for Scientific Teaching (WPST) have distilled key findings from education, learning, and cognitive psychology and translated them into six chapters of digestible research points and practical classroom examples. The recommendations have been tried and tested in the National Academies Summer Institute on Undergraduate Education in Biology and through the WPST. Scientific Teaching is not a prescription for better teaching. Rather, it encourages the reader to approach teaching in a way that captures the spirit and rigor of scientific research and to contribute to transforming how students learn science.


Discipline-Based Education Research

Discipline-Based Education Research

Author: National Research Council

Publisher: National Academies Press

Published: 2012-08-27

Total Pages: 282

ISBN-13: 0309254140

DOWNLOAD EBOOK

The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the discipline-specific difficulties learners face and the specialized intellectual and instructional resources that can facilitate student understanding. Discipline-Based Education Research is based on a 30-month study built on two workshops held in 2008 to explore evidence on promising practices in undergraduate science, technology, engineering, and mathematics (STEM) education. This book asks questions that are essential to advancing DBER and broadening its impact on undergraduate science teaching and learning. The book provides empirical research on undergraduate teaching and learning in the sciences, explores the extent to which this research currently influences undergraduate instruction, and identifies the intellectual and material resources required to further develop DBER. Discipline-Based Education Research provides guidance for future DBER research. In addition, the findings and recommendations of this report may invite, if not assist, post-secondary institutions to increase interest and research activity in DBER and improve its quality and usefulness across all natural science disciples, as well as guide instruction and assessment across natural science courses to improve student learning. The book brings greater focus to issues of student attrition in the natural sciences that are related to the quality of instruction. Discipline-Based Education Research will be of interest to educators, policy makers, researchers, scholars, decision makers in universities, government agencies, curriculum developers, research sponsors, and education advocacy groups.


Research Based Undergraduate Science Teaching

Research Based Undergraduate Science Teaching

Author: Dennis W. Sunal

Publisher: IAP

Published: 2014-07-01

Total Pages: 542

ISBN-13: 162396752X

DOWNLOAD EBOOK

Research in Science Education (RISE) Volume 6, Research Based Undergraduate Science Teaching examines research, theory, and practice concerning issues of teaching science with undergraduates. This RISE volume addresses higher education faculty and all who teach entry level science. The focus is on helping undergraduates develop a basic science literacy leading to scientific expertise. RISE Volume 6 focuses on research-based reforms leading to best practices in teaching undergraduates in science and engineering. The goal of this volume is to provide a research foundation for the professional development of faculty teaching undergraduate science. Such science instruction should have short- and longterm impacts on student outcomes. The goal was carried out through a series of events over several years. The website at http://nseus.org documents materials from these events. The international call for manuscripts for this volume requested the inclusion of major priorities and critical research areas, methodological concerns, and results of implementation of faculty professional development programs and reform in teaching in undergraduate science classrooms. In developing research manuscripts to be reviewed for RISE, Volume 6, researchers were asked to consider the status and effectiveness of current and experimental practices for reforming undergraduate science courses involving all undergraduates, including groups of students who are not always well represented in STEM education. To influence practice, it is important to understand how researchbased practice is made and how it is implemented. The volume should be considered as a first step in thinking through what reform in undergraduate science teaching might look like and how we help faculty to implement such reform.