V. 1 The plant cell. v. 2. Metabolism and respiration. v. 3. Carbohydrates. v. 4. Lipids. v. 5. Amino acids and derivates. v. 6. Proteins and nucleic acids. v. 7. Secondary plant products. v. 8. Photosynthesis. v. 9. Lipids: structure a nd function. v. 10. Photosynthesis. v. 11. Biochemistry of metabolism. v. 12. P hysiology of metabolism. v. 13. Methodology. v. 14. Carbohydrates. v. 15. Molecular biology. v.16. Intermediary nitrogen metabolism.
The second edition of this book on lipids, lipoprotein and membrane biochemistry has two major objectives - to provide anadvanced textbook for students in these areas of biochemistry,and to summarise the field for scientists pursuing research inthese and related fields. Since the first edition of this book was published in 1985 theemphasis on research in the area of lipid and membrane biochemistry has evolved in new directions. Consequently, thesecond edition has been modified to include four chapters on lipoproteins. Moreover, the other chapters have been extensivelyupdated and revised so that additional material covering the areas of cell signalling by lipids, the assembly of lipids andproteins into membranes, and the increasing use of molecular biological techniques for research in the areas of lipid, lipoprotein and membrane biochemistry have been included. Each chapter of the textbook is written by an expert in the field, but the chapters are not simply reviews of current literature. Rather, they are written as current, readable summaries of these areas of research which should be readily understandable to students and researchers who have a basic knowledge of general biochemistry. The authors were selected fortheir abilities both as researchers and as communicators. In addition, the editors have carefully coordinated the chapters sothat there is little overlap, yet extensive cross-referencing among chapters.
Biochemistry of Lipids: Lipoproteins and Membranes, Volume Six, contains concise chapters that cover a wide spectrum of topics in the field of lipid biochemistry and cell biology. It provides an important bridge between broad-based biochemistry textbooks and more technical research publications, offering cohesive, foundational information. It is a valuable tool for advanced graduate students and researchers who are interested in exploring lipid biology in more detail, and includes overviews of lipid biology in both prokaryotes and eukaryotes, while also providing fundamental background on the subsequent descriptions of fatty acid synthesis, desaturation and elongation, and the pathways that lead the synthesis of complex phospholipids, sphingolipids, and their structural variants. Also covered are sections on how bioactive lipids are involved in cell signaling with an emphasis on disease implications and pathological consequences. - Serves as a general reference book for scientists studying lipids, lipoproteins and membranes and as an advanced and up-to-date textbook for teachers and students who are familiar with the basic concepts of lipid biochemistry - References from current literature will be included in each chapter to facilitate more in-depth study - Key concepts are supported by figures and models to improve reader understanding - Chapters provide historical perspective and current analysis of each topic
Presents the State-of-the-Art in Fat Taste TransductionA bite of cheese, a few potato chips, a delectable piece of bacon - a small taste of high-fat foods often draws you back for more. But why are fatty foods so appealing? Why do we crave them? Fat Detection: Taste, Texture, and Post Ingestive Effects covers the many factors responsible for the se
Lipids in Photosynthesis provides readers with a comprehensive view of the structure, function and genetics of lipids in plants, algae and bacteria, with special emphasis on the photosynthetic apparatus in thylakoid membranes. This volume includes the historical background of the field, as well as a full review of our current understanding of the structure and molecular organization of lipids and their role in the functions of photosynthetic membranes. The physical properties of membrane lipids in thylakoid membranes and their relationship to photosynthesis are also discussed. Other topics include the biosynthesis of glycerolipids and triglycerides; reconstitution of photosynthetic structures and activities with lipids; lipid-protein interactions in the import of proteins into chloroplasts; the development of thylakoid membranes as it relates to lipids; genetic engineering of the unsaturation of membrane glycerolipids, with a focus on the ability of the photosynthetic machinery to tolerate temperature stress; and the involvement of chloroplast lipids in the reactions of plants upon exposure to stress. This book is intended for a wide audience and should be of interest to advanced undergraduate and graduate students and to researchers active in the field, as well as to those scientists whose fields of specialization include the biochemistry, physiology, molecular biology, biophysics and biotechnology of membranes.
Diet and Health examines the many complex issues concerning diet and its role in increasing or decreasing the risk of chronic disease. It proposes dietary recommendations for reducing the risk of the major diseases and causes of death today: atherosclerotic cardiovascular diseases (including heart attack and stroke), cancer, high blood pressure, obesity, osteoporosis, diabetes mellitus, liver disease, and dental caries.
Biology for AP® courses covers the scope and sequence requirements of a typical two-semester Advanced Placement® biology course. The text provides comprehensive coverage of foundational research and core biology concepts through an evolutionary lens. Biology for AP® Courses was designed to meet and exceed the requirements of the College Board’s AP® Biology framework while allowing significant flexibility for instructors. Each section of the book includes an introduction based on the AP® curriculum and includes rich features that engage students in scientific practice and AP® test preparation; it also highlights careers and research opportunities in biological sciences.
Since the publication of the first edition of this successful and popular book in 1970, the subject of lipid biochemistry has evolved greatly and this fifth up-to-date and comprehensive edition includes much new and exciting information. Lipid Biochemistry, fifth edition has been largely re-written in a user-friendly way, with chapters containing special interest topic boxes, summary points and lists of suggested reading, further enhancing the accessibility and readability of this excellent text. Contents include abbreviations and definitions used in the study of lipids, routine analytical methods, fatty acid structure and metabolism, dietary lipids and lipids as energy stores, lipid transport, lipids in cellular structures and the metabolism of structural lipids. The book provides a most comprehensive treatment of the subject, making it essential reading for all those working with or studying lipids. Upper level students of biochemistry, biology, clinical subjects, nutrition and food science will find the contents of this book invaluable as a study aid, as will postgraduates specializing in the topics covered in the book. Professionals working in research in academia and industry, including personnel involved in food and nutrition research, new product formulation, special diet formulation (including nutraceuticals and functional foods) and other clinical aspects will find a vast wealth of information within the book's pages. Michael Gurr was a Visiting Professor in Human Nutrition at the University of Reading, UK and at Oxford Brookes University, UK. John Harwood is a Professor of Biochemistry at the School of Biosciences, Cardiff University, UK. Keith Frayn is a Professor of Human Metabolism at the Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, UK.
This book summarizes recent advances in understanding the functions of plant and algal lipids in photosynthesis, in development and signaling, and in industrial applications. As readers will discover, biochemistry, enzymology and analytical chemistry, as well as gene knock-out studies have all contributed to our rapidly increasing understanding of the functions of lipids. In the past few decades, distinct physical and biochemical properties of specific lipid classes were revealed in plant and algal lipids and the functional aspects of lipids in modulating critical biological processes have been uncovered. These chapters from international authors across relevant research fields highlight the underlying evolutionary context of lipid function in photosynthetic unicellular and multicellular organisms. The book goes on to encompass what lipids can do for industrial applications at a time of fascination with plants and algae in carbon fixation and as sources for production of food, energy and novel chemicals. The developmental context is a part of the fresh and engaging perspective that is presented in this work which graduate students and scientists will find both illuminating and useful.