Linearization Models for Complex Dynamical Systems

Linearization Models for Complex Dynamical Systems

Author: Mark Elin

Publisher: Springer Science & Business Media

Published: 2011-02-09

Total Pages: 271

ISBN-13: 3034605099

DOWNLOAD EBOOK

Linearization models for discrete and continuous time dynamical systems are the driving forces for modern geometric function theory and composition operator theory on function spaces. This book focuses on a systematic survey and detailed treatment of linearization models for one-parameter semigroups, Schröder’s and Abel’s functional equations, and various classes of univalent functions which serve as intertwining mappings for nonlinear and linear semigroups. These topics are applicable to the study of problems in complex analysis, stochastic and evolution processes and approximation theory.


Linearization Models for Complex Dynamical Systems

Linearization Models for Complex Dynamical Systems

Author: Mark Elin

Publisher: Birkhäuser

Published: 2010-06-14

Total Pages: 268

ISBN-13: 9783034605083

DOWNLOAD EBOOK

Linearization models for discrete and continuous time dynamical systems are the driving forces for modern geometric function theory and composition operator theory on function spaces. This book focuses on a systematic survey and detailed treatment of linearization models for one-parameter semigroups, Schröder’s and Abel’s functional equations, and various classes of univalent functions which serve as intertwining mappings for nonlinear and linear semigroups. These topics are applicable to the study of problems in complex analysis, stochastic and evolution processes and approximation theory.


Linearization Methods for Stochastic Dynamic Systems

Linearization Methods for Stochastic Dynamic Systems

Author: Leslaw Socha

Publisher: Springer Science & Business Media

Published: 2007-12-20

Total Pages: 392

ISBN-13: 3540729968

DOWNLOAD EBOOK

For most cases of interest, exact solutions to nonlinear equations describing stochastic dynamical systems are not available. This book details the relatively simple and popular linearization techniques available, covering theory as well as application. It examines models with continuous external and parametric excitations, those that cover the majority of known approaches.


Complex Analysis and Dynamical Systems

Complex Analysis and Dynamical Systems

Author: Mark Agranovsky

Publisher: Birkhäuser

Published: 2018-01-31

Total Pages: 373

ISBN-13: 3319701541

DOWNLOAD EBOOK

This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.


Model Reduction of Complex Dynamical Systems

Model Reduction of Complex Dynamical Systems

Author: Peter Benner

Publisher: Springer Nature

Published: 2021-08-26

Total Pages: 415

ISBN-13: 3030729834

DOWNLOAD EBOOK

This contributed volume presents some of the latest research related to model order reduction of complex dynamical systems with a focus on time-dependent problems. Chapters are written by leading researchers and users of model order reduction techniques and are based on presentations given at the 2019 edition of the workshop series Model Reduction of Complex Dynamical Systems – MODRED, held at the University of Graz in Austria. The topics considered can be divided into five categories: system-theoretic methods, such as balanced truncation, Hankel norm approximation, and reduced-basis methods; data-driven methods, including Loewner matrix and pencil-based approaches, dynamic mode decomposition, and kernel-based methods; surrogate modeling for design and optimization, with special emphasis on control and data assimilation; model reduction methods in applications, such as control and network systems, computational electromagnetics, structural mechanics, and fluid dynamics; and model order reduction software packages and benchmarks. This volume will be an ideal resource for graduate students and researchers in all areas of model reduction, as well as those working in applied mathematics and theoretical informatics.


Complex Analysis and Dynamical Systems VI

Complex Analysis and Dynamical Systems VI

Author: Matania Ben-Artzi

Publisher: American Mathematical Soc.

Published: 2015-12-03

Total Pages: 352

ISBN-13: 1470416530

DOWNLOAD EBOOK

This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19-24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers in this volume range over a wide variety of topics in Partial Differential Equations, Differential Geometry, and the Radon Transform. Taken together, the articles collected here provide the reader with a panorama of activity in partial differential equations and general relativity, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 667) is devoted to complex analysis, quasiconformal mappings, and complex dynamics. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).


Complex Analysis and Dynamical Systems VI

Complex Analysis and Dynamical Systems VI

Author: Lawrence Zalcman

Publisher: American Mathematical Soc.

Published: 2016-05-19

Total Pages: 354

ISBN-13: 1470417030

DOWNLOAD EBOOK

This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19–24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers range over a wide variety of topics in complex analysis, quasiconformal mappings, and complex dynamics. Taken together, the articles provide the reader with a panorama of activity in these areas, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 653) is devoted to partial differential equations, differential geometry, and radon transforms.


Differential Dynamical Systems, Revised Edition

Differential Dynamical Systems, Revised Edition

Author: James D. Meiss

Publisher: SIAM

Published: 2017-01-24

Total Pages: 410

ISBN-13: 161197464X

DOWNLOAD EBOOK

Differential equations are the basis for models of any physical systems that exhibit smooth change. This book combines much of the material found in a traditional course on ordinary differential equations with an introduction to the more modern theory of dynamical systems. Applications of this theory to physics, biology, chemistry, and engineering are shown through examples in such areas as population modeling, fluid dynamics, electronics, and mechanics. Differential Dynamical Systems begins with coverage of linear systems, including matrix algebra; the focus then shifts to foundational material on nonlinear differential equations, making heavy use of the contraction-mapping theorem. Subsequent chapters deal specifically with dynamical systems concepts?flow, stability, invariant manifolds, the phase plane, bifurcation, chaos, and Hamiltonian dynamics. This new edition contains several important updates and revisions throughout the book. Throughout the book, the author includes exercises to help students develop an analytical and geometrical understanding of dynamics. Many of the exercises and examples are based on applications and some involve computation; an appendix offers simple codes written in Maple, Mathematica, and MATLAB software to give students practice with computation applied to dynamical systems problems.


Complex Analysis and Geometry

Complex Analysis and Geometry

Author: Filippo Bracci

Publisher: Springer

Published: 2015-08-05

Total Pages: 370

ISBN-13: 443155744X

DOWNLOAD EBOOK

This volume includes 28 chapters by authors who are leading researchers of the world describing many of the up-to-date aspects in the field of several complex variables (SCV). These contributions are based upon their presentations at the 10th Korean Conference on Several Complex Variables (KSCV10), held as a satellite conference to the International Congress of Mathematicians (ICM) 2014 in Seoul, Korea. SCV has been the term for multidimensional complex analysis, one of the central research areas in mathematics. Studies over time have revealed a variety of rich, intriguing, new knowledge in complex analysis and geometry of analytic spaces and holomorphic functions which were "hidden" in the case of complex dimension one. These new theories have significant intersections with algebraic geometry, differential geometry, partial differential equations, dynamics, functional analysis and operator theory, and sheaves and cohomology, as well as the traditional analysis of holomorphic functions in all dimensions. This book is suitable for a broad audience of mathematicians at and above the beginning graduate-student level. Many chapters pose open-ended problems for further research, and one in particular is devoted to problems for future investigations.


Data-Driven Science and Engineering

Data-Driven Science and Engineering

Author: Steven L. Brunton

Publisher: Cambridge University Press

Published: 2022-05-05

Total Pages: 615

ISBN-13: 1009098489

DOWNLOAD EBOOK

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.