Linear Multivariable Control Systems

Linear Multivariable Control Systems

Author: Shankar P. Bhattacharyya

Publisher: Cambridge University Press

Published: 2022-01-13

Total Pages: 697

ISBN-13: 1108841686

DOWNLOAD EBOOK

A graduate text providing broad coverage of linear multivariable control systems, including several new results and recent approaches.


Linear Multivariable Control

Linear Multivariable Control

Author: W. M. Wonham

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 357

ISBN-13: 3662226731

DOWNLOAD EBOOK

In writing this monograph my objective is to present arecent, 'geometrie' approach to the structural synthesis of multivariable control systems that are linear, time-invariant, and of finite dynamic order. The book is addressed to graduate students specializing in control, to engineering scientists engaged in control systems research and development, and to mathematicians with some previous acquaintance with control problems. The label 'geometrie' is applied for several reasons. First and obviously, the setting is linear state space and the mathematics chiefly linear algebra in abstract (geometrie) style. The basic ideas are the familiar system concepts of controllability and observability, thought of as geometrie properties of distinguished state subspaces. Indeed, the geometry was first brought in out of revulsion against the orgy of matrix manipulation which linear control theory mainly consisted of, not so long ago. But secondlyand of greater interest, the geometrie setting rather quickly suggested new methods of attacking synthesis which have proved to be intuitive and economical; they are also easily reduced to matrix arith metic as soonas you want to compute. The essence of the 'geometrie' approach is just this: instead of looking directly for a feedback laW (say u = Fx) which would solve your synthesis problem if a solution exists, first characterize solvability as a verifiable property of some constructible state subspace, say J. Then, if all is weIl, you may calculate F from J quite easily.


Multivariable Control Systems

Multivariable Control Systems

Author: P. Albertos Pérez

Publisher: Springer Science & Business Media

Published: 2004

Total Pages: 357

ISBN-13: 1852337389

DOWNLOAD EBOOK

Multivariable Control Systems focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasises the need to maintain student interest and motivation over exhaustive mathematical proof. Tools of analysis and representation are always developed as methods for achieving a final control system design and evaluation. Features: • design implementation laid out using extensive reference to MATLAB®; • combined consideration of systems (plant) and signals (mainly disturbances); • step-by-step approach from the objectives of multivariable control to the solution of complete design problems. Multivariable Control Systems is an ideal text for graduate students or for final-year undergraduates looking for more depth than provided by introductory textbooks. It will also interest the control engineer practising in industry and seeking to implement robust or multivariable control solutions to plant problems.


Multivariable Feedback Control

Multivariable Feedback Control

Author: Sigurd Skogestad

Publisher: John Wiley & Sons

Published: 2005-11-04

Total Pages: 594

ISBN-13: 047001167X

DOWNLOAD EBOOK

Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing


Multivariable Control

Multivariable Control

Author: S.G. Tzafestas

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 509

ISBN-13: 9400964781

DOWNLOAD EBOOK

The foundation of linear systems theory goes back to Newton and has been followed over the years by many improvements such as linear operator theory, Laplace Transformation etc. After the World War II, feedback control theory has shown a rapid development, and standard elegant analysis and synthesis techniques have been discovered by control system workers, such as root-locus (Evans) and frequency response methods (Nyquist, Bode). These permitted a fast and efficient analysis of simple-loop control systems, but in their original "paper-and-pencil" form were not appropriate for multiple loop high-order systems. The advent of fast digital computers, together with the development of multivariable multi-loop system techniques, have eliminated these difficulties. Multivariable control theory has followed two main avenues; the optimal control approach, and the algebraic and frequency-domain control approach. An important key concept in the whole multivariable system theory is "ob servability and controllability" which revealed the exact relationships between transfer functions and the state variable representations. This has given new insight into the phenomenon of "hidden oscillations" and to the transfer function modelling of dynamic systems. The basic tool in optimal control theory is the celebrated matrix Riccati differential equation which provides the time-varying feedback gains in a linear-quadratic control system cell. Much theory presently exists for the characteristic properties and solution of this Riccati equation.


A Generalized Framework of Linear Multivariable Control

A Generalized Framework of Linear Multivariable Control

Author: Liansheng Tan

Publisher: Butterworth-Heinemann

Published: 2017-02-04

Total Pages: 324

ISBN-13: 0081019475

DOWNLOAD EBOOK

A Generalized Framework of Linear Multivariable Control proposes a number of generalized models by using the generalized inverse of matrix, while the usual linear multivariable control theory relies on some regular models. The book supports that in H-infinity control, the linear fractional transformation formulation is relying on the inverse of the block matrix. If the block matrix is not regular, the H-infinity control does not apply any more in the normal framework. Therefore, it is very important to relax those restrictions to generalize the classical notions and models to include some non-regular cases. This book is ideal for scholars, academics, professional engineer and students who are interested in control system theory. - Presents a comprehensive set of numerical procedures, algorithms, and examples on how to deal with irregular models - Provides a summary on generalized framework of linear multivariable control that focuses on generalizations of models and notions - Introduces a number of generalized models by using the generalized inverse of matrix


Linear and Nonlinear Multivariable Feedback Control

Linear and Nonlinear Multivariable Feedback Control

Author: Oleg Gasparyan

Publisher: John Wiley & Sons

Published: 2008-03-03

Total Pages: 355

ISBN-13: 0470061049

DOWNLOAD EBOOK

Automatic feedback control systems play crucial roles in many fields, including manufacturing industries, communications, naval and space systems. At its simplest, a control system represents a feedback loop in which the difference between the ideal (input) and actual (output) signals is used to modify the behaviour of the system. Control systems are in our homes, computers, cars and toys. Basic control principles can also be found in areas such as medicine, biology and economics, where feedback mechanisms are ever present. Linear and Nonlinear Multivariable Feedback Control presents a highly original, unified control theory of both linear and nonlinear multivariable (also known as multi-input multi-output (MIMO)) feedback systems as a straightforward extension of classical control theory. It shows how the classical engineering methods look in the multidimensional case and how practising engineers or researchers can apply them to the analysis and design of linear and nonlinear MIMO systems. This comprehensive book: uses a fresh approach, bridging the gap between classical and modern, linear and nonlinear multivariable control theories; includes vital nonlinear topics such as limit cycle prediction and forced oscillations analysis on the basis of the describing function method and absolute stability analysis by means of the primary classical frequency-domain criteria (e.g. Popov, circle or parabolic criteria); reinforces the main themes with practical worked examples solved by a special MATLAB-based graphical user interface, as well as with problems, questions and exercises on an accompanying website. The approaches presented in Linear and Nonlinear Multivariable Feedback Control form an invaluable resource for graduate and undergraduate students studying multivariable feedback control as well as those studying classical or modern control theories. The book also provides a useful reference for researchers, experts and practitioners working in industry


Linear Multivariable Control

Linear Multivariable Control

Author: A. I. G. Vardulakis

Publisher: John Wiley & Sons

Published: 1991

Total Pages: 392

ISBN-13:

DOWNLOAD EBOOK

Details the basic theory of polynomial and fractional representation methods for algebraic analysis and synthesis of linear multivariable control systems. It also serves as a self-contained treatise of the mathematical theory so that results and techniques of the ``state space approaches'' for regular and singular systems appear as special cases of a general theory covering the wider class of PMDs of linear systems. Among the topics covered are: real rational vector spaces and rational matrices, pole and zero structure of rational matrices at infinity, proper and omega stable rational fuctions and matrices.


Multivariable Control Systems

Multivariable Control Systems

Author: Pedro Albertos

Publisher: Springer Science & Business Media

Published: 2006-04-18

Total Pages: 357

ISBN-13: 1852338431

DOWNLOAD EBOOK

This book focuses on control design with continual references to the practical aspects of implementation. While the concepts of multivariable control are justified, the book emphasizes the need to maintain student interest and motivation over exhaustively rigorous mathematical proof.