This book is aimed at studying the scattering of monochromatic radiation in plane inhomogeneous media. We are dealing with the media whose optical properties depend on a single spatial coordinate, namely of a depth. The most widely known books on radiation transfer, for instance 1. S. Chandrasekhar, Radiative Transfer, Oxford, Clarendon Press, 1950, (RT), 2. V. V. Sobolev, Light Scattering in Planetary Atmospheres, New York, Pergamon Press, 1975, (LSPA), 3. H. C. van de Hulst, Multiple Light Scattering. Tables, Formulas and - plications. Vol. 1,2, New York, Academic Press, 1980, (MLS), treat mainly the homogeneous atmospheres. However, as known, the actual atmospheres of stars and planets, basins of water, and other artificial and nat ural media are not homogeneous. This book deals with the model of vertically inhomogeneous atmosphere, which is closer to reality than the homogeneous models. This book is close to the aforementioned monographs in its scope of prob lems and style. Therefore, I guess that a preliminary knowledge of the con tents of these books, particularly of the book by Sobolev, would facilitate the readers' task substantially. On the other hand, all concepts, problems, and equations used in this book are considered in full in Chap. 1. So, it will be possible for those readers who do not possess the above knowledge to understand this book. A general idea about the content of the book can be gained from both the Introduction and the Table of Contents.
This new text offers experienced students a comprehensive review of available techniques for the remote sensing of aerosols. These small particles influence both atmospheric visibility and the thermodynamics of the atmosphere. They are also of great importance in any consideration of climate change problems. Aerosols may also be responsible for the loss of harvests, human health problems and ecological disasters. Thus, this detailed study of aerosol properties on a global scale could not be more timely.
Light scattering review (vol 8) is aimed at the presentation of recent advances in radiative transfer and light scattering optics. The topics to be covered include: scattering of light by irregularly shaped particles suspended in atmosphere (dust, ice crystals), light scattering by particles much larger as compared the wavelength of incident radiation, atmospheric radiative forcing, astrophysical radiative transfer, radiative transfer and optical imaging in biological media, radiative transfer of polarized light, numerical aspects of radiative transfer.
Following the rapid developments in the UV-B measurement techniques and the rapidly growing research in the field in the late 80's and early 90's, we organized a large gathering of distinguished experts in a NATO Advanced Study Institute, held in Halkidiki, Greece on October, 2-11. 1995. The Institute was organized so as to include state of the art lectures on most aspects of solar ultraviolet radiation and its effects. This was achieved by extended lectures and discussions given in five sessions by 27 lecturers and a demonstration of filed measurements and calibration techniques at the end of the Institute. The ASI began with the sun and fundamentals on solar radiative emissions and their variability in time and continued with the interaction of solar Ultraviolet with the atmosphere through the complex scattering processes and photochemical reactions involved. Particular emphasis was given to changes in atmospheric composition imposed by different manifestations of the solar activity cycle. as well as on the modelling of radiative transfer through the atmosphere and the ocean under variable environmental conditions. Overviews on the ozone issue. its monitoring and variability were extensively discussed with emphasis on the observed acceleration of ozone decline in the early 90's. This acceleration had as a consequence, significant increases in UV-B radiation observed at a few world-wide distributed stations.
Advanced Remote Sensing is an application-based reference that provides a single source of mathematical concepts necessary for remote sensing data gathering and assimilation. It presents state-of-the-art techniques for estimating land surface variables from a variety of data types, including optical sensors such as RADAR and LIDAR. Scientists in a number of different fields including geography, geology, atmospheric science, environmental science, planetary science and ecology will have access to critically-important data extraction techniques and their virtually unlimited applications. While rigorous enough for the most experienced of scientists, the techniques are well designed and integrated, making the book's content intuitive, clearly presented, and practical in its implementation. - Comprehensive overview of various practical methods and algorithms - Detailed description of the principles and procedures of the state-of-the-art algorithms - Real-world case studies open several chapters - More than 500 full-color figures and tables - Edited by top remote sensing experts with contributions from authors across the geosciences