Light Scattering from Microstructures

Light Scattering from Microstructures

Author: Fernando Moreno

Publisher: Springer

Published: 2008-01-11

Total Pages: 293

ISBN-13: 3540466142

DOWNLOAD EBOOK

The classical phenomenon of light scattering is one of the most studied t- ics in light-matter interaction and, even today, involves some controversial issues. A present focus of interest for many researchers is the possibility of obtaining information about microstructures, for example surface roughness, and the size, shape and optical properties of particles by means of a n- invasive technique such as the illumination of these objects with light. One of their main tasks is to extract the relevant information from a detailed study of the scattered radiation. This includes: measurement of the light intensity in di erent directions, analysis of its polarization, determination of its stat- tics,etc. Contributionstoresolvingthisproblemareimportantnotonlyfrom the point of view of increasing basic knowledge but also in their applications to several elds of industry and technology. Consider, for example, the pos- bility of distinguishing between di erent types of atmospheric contaminants, biological contaminants in our blood, the detection of microdefects in the manufacturing of semiconductors, magnetic discs and optical components, or the development of biological sensors. During the period September 11-13, 1998, we brought together a group of international experts on light scattering at the Summer School of Laredo at the University of Cantabria. In a series of one-hour lectures, they discussed currentaspectsoflightscatteringfrommicrostructureswithspecialemphasis on recent applications. The present book condenses those lectures into ve parts.


Light Scattering in Semiconductor Structures and Superlattices

Light Scattering in Semiconductor Structures and Superlattices

Author: D.J. Lockwood

Publisher: Springer

Published: 2013-12-20

Total Pages: 592

ISBN-13: 1489936955

DOWNLOAD EBOOK

Just over 25 years ago the first laser-excited Raman spectrum of any crystal was obtained. In November 1964, Hobden and Russell reported the Raman spectrum of GaP and later, in June 1965, Russell published the Si spectrum. Then, in July 1965, the forerunner of a series of meetings on light scattering in solids was held in Paris. Laser Raman spectroscopy of semiconductors was at the forefront in new developments at this meeting. Similar meetings were held in 1968 (New York), 1971 (Paris) and 1975 (Campinas). Since then, and apart from the multidisciplinary biennial International Conference on Raman Spectroscopy there has been no special forum for experts in light scattering spectroscopy of semiconductors to meet and discuss latest developments. Meanwhile, technological advances in semiconductor growth have given rise to a veritable renaissance in the field of semiconductor physics. Light scattering spectroscopy has played a crucial role in the advancement of this field, providing valuable information about the electronic, vibrational and structural properties both of the host materials, and of heterogeneous composite structures. On entering a new decade, one in which technological advances in lithography promise to open even broader horirons for semiconductor physics, it seemed to us to be an ideal time to reflect on the achievements of the past decade, to be brought up to date on the current state-of-the-art, and to catch some glimpses of where the field might be headed in the 1990s.


Light Scattering Technology for Food Property, Quality and Safety Assessment

Light Scattering Technology for Food Property, Quality and Safety Assessment

Author: Renfu Lu

Publisher: CRC Press

Published: 2017-11-22

Total Pages: 538

ISBN-13: 131535487X

DOWNLOAD EBOOK

Light Scattering Technology for Food Property, Quality and Safety Assessment discusses the development and application of various light scattering techniques for measuring the structural and rheological properties of food, evaluating composition and quality attributes, and detecting pathogens in food. The first four chapters cover basic concepts, principles, theories, and modeling of light transfer in food and biological materials. Chapters 5 and 6 describe parameter estimation methods and basic techniques for determining optical absorption and scattering properties of food products. Chapter 7 discusses the spatially-resolved measurement technique for determining the optical properties of food and biological materials, whereas Chapter 8 focuses on the time-resolved spectroscopic technique for measuring optical properties and quality or maturity of horticultural products. Chapter 9 examines practical light scattering techniques for nondestructive quality assessment of fruits and vegetables. Chapter 10 presents the theory of light transfer in meat muscle and the measurement of optical properties for determining the postmortem condition and textural properties of muscle foods and meat analogs. Chapter 11 covers the applications of spatially-resolved light scattering techniques for assessing quality and safety of animal products. Chapter 12 looks into light scattering for milk and dairy processing. Chapter 13 examines the applications of dynamic light scattering for measuring the microstructure and rheological properties of food. Chapter 14 shows the applications of a biospeckle technique for assessing the quality and condition of fruits and vegetables. Chapter 15 provides a detailed description of Raman scattering spectroscopic and imaging techniques in food quality and safety assessment. Chapter 16, the final chapter, focuses on applications of light scattering techniques for the detection of food-borne pathogens.


Light Scattering Media Optics

Light Scattering Media Optics

Author: Alex A. Kokhanovsky

Publisher: Springer Science & Business Media

Published: 2004-08-05

Total Pages: 332

ISBN-13: 9783540211846

DOWNLOAD EBOOK

The theory of the scattering of light by small particles is very important in a wide range of applications in atmospheric physics and atmospheric optics, ocean optics, remote sensing, astronomy and astrophysics and biological optics. This book summarises current knowledge of the optical properties of single small particles and natural light scattering media such as snow, clouds, foam aerosols etc. The book considers both single and multiple light scattering regimes, together with light scattering and radiative transfer in close-packed media. The third edition incorporates new findings in the area of light scattering media optics in an updated version of the text.


Microstructural Principles of Food Processing and Engineering

Microstructural Principles of Food Processing and Engineering

Author: José Miguel Aguilera

Publisher: Springer Science & Business Media

Published: 1999-09-30

Total Pages: 466

ISBN-13: 9780834212565

DOWNLOAD EBOOK

An Aspen Food Engineering Series Book. This new edition provides a comprehensive reference on food microstructure, emphasizing its interdisciplinary nature, rooted in the scientific principles of food materials science and physical chemistry. The book details the techniques available to study food microstructure, examines the microstructure of basic food components and its relation to quality, and explores how microstructure is affected by specific unit operations in food process engineering. Descriptions of a number of food-related applications provide a better understanding of the complexities of the microstructural approach to food processing. Color plates.


Understanding and Controlling the Microstructure of Complex Foods

Understanding and Controlling the Microstructure of Complex Foods

Author: D. Julian McClements

Publisher: Elsevier

Published: 2007-08-30

Total Pages: 793

ISBN-13: 1845693671

DOWNLOAD EBOOK

It is widely accepted that the creation of novel foods or improvement of existing foods largely depends on a strong understanding and awareness of the intricate interrelationship between the nanoscopic, microscopic and macroscopic features of foods and their bulk physiochemical properties, sensory attributes and healthfulness. With its distinguished editor and array of international contributors, Understanding and controlling the microstructure of complex foods provides a review of current understanding of significant aspects of food structure and methods for its control.Part one focuses on the fundamental structural elements present in foods such as polysaccharides, proteins and fats and the forces which hold them together. Part two discusses novel analytical techniques which can provide information on the morphology and behaviour of food materials. Chapters cover atomic force microscopy, image analysis, scattering techniques and computer analysis. Chapters in part three examine how the principles of structural design can be employed to improve performance and functionality of foods. The final part of the book discusses how knowledge of structural and physicochemical properties can be implemented to improve properties of specific foods such as ice-cream, spreads, protein-based drinks, chocolate and bread dough.Understanding and controlling the microstructure of complex foods is an essential reference for industry professionals and scientists concerned with improving the performance of existing food products and inventing novel food products. - Reviews the current understanding of significant aspects of food structure and methods for its control - Focuses on the fundamental structural elements present in foods such as proteins and fats and the forces that hold them together - Discusses novel analytical techniques that provide information on the morphology and behaviour of food materials


Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs

Dispersion Stability, Microstructure and Phase Transition of Anisotropic Nanodiscs

Author: Ravi Kumar Pujala

Publisher: Springer

Published: 2014-06-03

Total Pages: 161

ISBN-13: 3319045555

DOWNLOAD EBOOK

This thesis explores the dispersion stability, microstructure and phase transitions involved in the nanoclay system. It describes the recently discovered formation of colloidal gels via two routes: the first is through phase separation and second is by equilibrium gelation and includes the first reported experimental observation of a system with high aspect ratio nanodiscs. The phase behavior of anisotropic nanodiscs of different aspect ratio in their individual and mixed states in aqueous and hydrophobic media is investigated. Distinct phase separation, equilibrium fluid and equilibrium gel phases are observed in nanoclay dispersions with extensive aging. The work then explores solution behavior, gelation kinetics, aging dynamics and temperature-induced ordering in the individual and mixed states of these discotic colloids. Anisotropic ordering dynamics induced by a water-air interface, waiting time and temperature in these dispersions were studied in great detail along with aggregation behavior of nanoplatelets in hydrophobic environment of alcohol solutions.


Particle Scattering, X-Ray Diffraction, and Microstructure of Solids and Liquids

Particle Scattering, X-Ray Diffraction, and Microstructure of Solids and Liquids

Author: Manfred L. Ristig

Publisher: Springer

Published: 2008-01-11

Total Pages: 206

ISBN-13: 3540458816

DOWNLOAD EBOOK

Interesting and new specific results of current theoretical and experimental work in various fields at the frontier of particle scattering and X-ray diffraction are reviewed in this volume. Special emphasis is placed on the study of the microstructure of solids, crystals and liquids, both classically and quantum mechanically. This gives the reader essential insights into the dynamics and properties of these states of matter. The authors address students interested in the physics of quantum solids, crystallography and material science as well as physical chemistry and computational physics.


Continuous Media with Microstructure 2

Continuous Media with Microstructure 2

Author: Bettina Albers

Publisher: Springer

Published: 2016-02-09

Total Pages: 416

ISBN-13: 3319282417

DOWNLOAD EBOOK

This book presents research advances in the field of Continuous Media with Microstructure and considers the three complementary pillars of mechanical sciences: theory, research and computational simulation. It focuses on the following problems: thermodynamic and mathematical modeling of materials with extensions of classical constitutive laws, single and multicomponent media including modern multifunctional materials, wave propagation, multiscale and multiphysics processes, phase transformations, and porous, granular and composite materials. The book presents the proceedings of the 2nd Conference on Continuous Media with Microstructure, which was held in 2015 in Łagów, Poland, in memory of Prof. Krzysztof Wilmański.