Ligand-Field Parameters

Ligand-Field Parameters

Author: M. Gerloch

Publisher: Cambridge University Press

Published: 1973-08-02

Total Pages: 256

ISBN-13: 9780521201377

DOWNLOAD EBOOK

This volume was originally published in 1973. The nature of the non-symmetry determined aspects of ligand-field theory receives inadequate treatment in most texts. This book is concerned with the nature of the ligand-field parameters used to describe the electronic properties of transition metal complexes having cubic and lower symmetries. These radial parameters constitute the non-symmetry-determined part of ligand-field theory. Symmetry-based properties are discussed here only to emphasize the separate roles of splitting factors and symmetry. The reader is assumed to be familiar with the usual approach to ligand-field theory and with elementary group theory.


A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1

Author: Mandeep Dalal

Publisher: Dalal Institute

Published: 2017-01-01

Total Pages: 482

ISBN-13: 8193872002

DOWNLOAD EBOOK

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory; dπ -pπ bonds; Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions; Trends in stepwise constants; Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand; Chelate effect and its thermodynamic origin; Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes; Mechanisms for ligand replacement reactions; Formation of complexes from aquo ions; Ligand displacement reactions in octahedral complexes- acid hydrolysis, base hydrolysis; Racemization of tris chelate complexes; Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes; The trans effect; Theories of trans effect; Mechanism of electron transfer reactions – types; outer sphere electron transfer mechanism and inner sphere electron transfer mechanism; Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory; Molecular orbital theory: octahedral, tetrahedral or square planar complexes; π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals; Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states); Calculation of Dq, B and β parameters; Effect of distortion on the d-orbital energy levels; Structural evidence from electronic spectrum; John-Tellar effect; Spectrochemical and nephalauxetic series; Charge transfer spectra; Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry; Guoy’s method for determination of magnetic susceptibility; Calculation of magnetic moments; Magnetic properties of free ions; Orbital contribution, effect of ligand-field; Application of magneto-chemistry in structure determination; Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes; Wade’s rules; Carboranes; Metal carbonyl clusters - low nuclearity carbonyl clusters; Total electron count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls: structure and bonding; Vibrational spectra of metal carbonyls for bonding and structure elucidation; Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.


Ligand Field Theory and Its Applications

Ligand Field Theory and Its Applications

Author: Brian N. Figgis

Publisher: Wiley-VCH

Published: 2000

Total Pages: 384

ISBN-13:

DOWNLOAD EBOOK

A complete, up-to-date treatment of ligand field theory and its applications Ligand Field Theory and Its Applications presents an up-to-date account of ligand field theory, the model currently used to describe the metal-ligand interactions in transition metal compounds, and the way it is used to interpret the physical properties of the complexes. It examines the traditional electrostatic crystal field model, still widely used by physicists, as well as covalent approaches such as the angular overlap model, which interprets the metal ligand interactions using parameters relating directly to chemical behavior. Written by internationally recognized experts in the field, this book provides a comparison between ligand field theory and more sophisticated treatments as well as an account of the methods used to calculate the energy levels in compounds of the transition metals. It also covers physical properties such as stereochemistry, light absorption, and magnetic behavior. An emphasis on the interpretation of experimental results broadens the book's field of interest beyond transition metal chemistry into the many other areas where these metal ions play an important role. As clear and accessible as Brian Figgis's 1966 classic Introduction to Ligand Fields, this new book provides inorganic and bioinorganic chemists as well as physical chemists, chemical physicists, and spectroscopists with a much-needed overview of the many significant changes that have taken place in ligand field theory over the past 30 years.


Magnetism and Ligand-Field Analysis

Magnetism and Ligand-Field Analysis

Author: M. Gerloch

Publisher: CUP Archive

Published: 1983

Total Pages: 616

ISBN-13: 9780521249393

DOWNLOAD EBOOK

In this book, a synthesis of old and new notions straddling the disciplines of physics and chemistry is described.


Ligand Field

Ligand Field

Author: Ekkehard Konig

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 449

ISBN-13: 1475715293

DOWNLOAD EBOOK

Twenty years ago Tanabe and Sugano published the first ligand field energy diagrarns which are applicable to dN electronic configurations. These diagrams are limited in scope in that they can be used only for octahedral symmetry and for a limited number of terms. The present volume is an attempt to fill the gap by providing a reasonable nurober of complete and accurate ligand field energy diagrarns for dN configurations in the most commonly encountered symmetries. Despite their limited nature, the diagrarns of Tanabe and Sugano were exten sively used in the past in order to rationalize optical and luminescence spectra and to discuss various electronic properties of transition metal ions, their coordination compounds and solids. Moreover, Tanabe-Sugano diagrams have an established place in the theory of transition metal compounds and are included in most textbooks of inorganic and coordination chemistry. It is expected that the present diagrarns will be found useful for a similar purpose.


Spectroscopic Properties of Rare Earths in Optical Materials

Spectroscopic Properties of Rare Earths in Optical Materials

Author: Guokui Liu

Publisher: Springer Science & Business Media

Published: 2006-01-29

Total Pages: 567

ISBN-13: 3540282092

DOWNLOAD EBOOK

Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.


Concise Encyclopedia of Magnetic and Superconducting Materials

Concise Encyclopedia of Magnetic and Superconducting Materials

Author: K.H.J. Buschow

Publisher: Elsevier

Published: 2005-12-28

Total Pages: 1361

ISBN-13: 0080457657

DOWNLOAD EBOOK

Magnetic and superconducting materials pervade every avenue of the technological world – from microelectronics and mass-data storage to medicine and heavy engineering. Both areas have experienced a recent revitalisation of interest due to the discovery of new materials, and the re-evaluation of a wide range of basic mechanisms and phenomena.This Concise Encyclopedia draws its material from the award-winning Encyclopedia of Materials and Engineering, and includes updates and revisions not available in the original set -- making it the ideal reference companion for materials scientists and engineers with an interest in magnetic and superconducting materials. - Contains in excess of 130 articles, taken from the award-winning Encyclopedia of Materials: Science and Technology, including ScienceDirect updates not available in the original set - Each article discusses one aspect of magnetic and superconducting materials and includes photographs, line drawings and tables to aid the understanding of the topic at hand - Cross-referencing guides readers to articles covering subjects of related interest


The Effective Crystal Field Potential

The Effective Crystal Field Potential

Author: J. Mulak

Publisher: Elsevier

Published: 2000-06-22

Total Pages: 319

ISBN-13: 0080530710

DOWNLOAD EBOOK

As it results from the very nature of things, the spherical symmetry of the surrounding of a site in a crystal lattice or an atom in a molecule can never occur. Therefore, the eigenfunctions and eigenvalues of any bound ion or atom have to differ from those of spherically symmetric respective free ions. In this way, the most simplified concept of the crystal field effect or ligand field effect in the case of individual molecules can be introduced. The conventional notion of the crystal field potential is narrowed to its non-spherical part only through ignoring the dominating spherical part which produces only a uniform energy shift of gravity centres of the free ion terms. It is well understood that the non-spherical part of the effective potential "seen" by open-shell electrons localized on a metal ion plays an essential role in most observed properties. Light adsorption, electron paramagnetic resonance, inelastic neutron scattering and basic characteristics derived from magnetic and thermal measurements, are only examples of a much wider class of experimental results dependent on it. The influence is discerned in all kinds of materials containing unpaired localized electrons: ionic crystals, semiconductors and metallic compounds including materials as intriguing as high-Tc superconductors, or heavy fermion systems. It is evident from the above that we deal with a widespread effect relative to all free ion terms except those which can stand the lowered symmetry, e.g. S-terms. Despite the universality of the phenomenon, the available handbooks on solid state physics pay only marginal attention to it, merely making mention of its occurrence. Present understanding of the origins of the crystal field potential differs essentially from the pioneering electrostatic picture postulated in the twenties. The considerable development of the theory that has been put forward since then can be traced in many regular articles scattered throughout the literature. The last two decades have left their impression as well but, to the authors' best knowledge, this period has not been closed with a more extended review. This has also motivated us to compile the main achievements in the field in the form of a book.


Systematics and the Properties of the Lanthanides

Systematics and the Properties of the Lanthanides

Author: Shyama P. Sinha

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 650

ISBN-13: 9400971753

DOWNLOAD EBOOK

Science is not a mere collection of facts. It is the correlation of facts, the interpretative synthesis of the available knowledge and its application that excite the imagination of a scientist. Even in these days of modern technology, the need for quick and accurate dissemination of new information and current concepts still exists. Conferences and Symposia offer one direct method of communication. The Summer Schools are another approach. The success of a Summer School is mainly due to that human factor and under standing that goes with it and allows for extensive and often time-unrestricted discussions. During the course of the past 20 years, one of the most in tensively studied groups of elements in the Periodic Table is the Lanthanides. In this period, we have increased our knowledge on these once exotic elements, which were once considered to be a part of a lean and hungry industry, many-fold due to the involve ment of scientists from various disciplines. The purpose of our Summer School was to bring a group of ex perts and participants together for the exchange of ideas and in formation in an informal setting and to promote interdisciplinary interactions. Out of many conceivable topics, we selected the following five as the main basis to broaden our knowledge and understanding I) Systematics 2) Structure 3) Electronic and Magnetic Proper ties 4) Spectroscopic Properties and 5) Lanthanide Geochemistry.


Understanding Molecular Properties

Understanding Molecular Properties

Author: John S. Avery

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 592

ISBN-13: 9400937814

DOWNLOAD EBOOK

"The Theory of Atomic Spectra", surrrrnanzlllg all that was then known about the quantum theory of free atoms; and in 1961, J.S. Griffith published "The Theory of Transition Metal Ions", in which he combined the ideas in Condon and Shortley's book with those of Bethe, Schlapp, Penney and Van Vleck. All this work, however, was done by physicists, and the results were reported in a way which was more accessable to physicists than to chemists. In the meantime, Carl J. Ballhausen had been studying quantum theory with W. Moffitt at Harvard; and in 1962 (almost simultaneously with Griffith) he published his extremely important book, "Introduction to Ligand Field Theory". This influential book was written from the standpoint of a chemist, and it became the standard work from which chemists learned the quantum theory of transition metal complexes. While it treated in detail the group theoretical aspects of crystal field theory, Carl J. Ballhausen's book also emphasized the limitations of the theory. As he pointed out, it is often not sufficient to treat the central metal ion as free (apart from the influence of the charges on the surrounding ligands): - In many cases hybridization of metal and ligand orbitals is significant. Thus, in general. a molecular orbital treatment is needed to describe transition metal complexes. However, much of the group theory developed In connection with crystal field theory can also be used in the molecular orbital treatment.