Lie Groups and Quantum Mechanics
Author: D. J. Simms
Publisher: Springer
Published: 2006-11-15
Total Pages: 98
ISBN-13: 3540358293
DOWNLOAD EBOOKRead and Download eBook Full
Author: D. J. Simms
Publisher: Springer
Published: 2006-11-15
Total Pages: 98
ISBN-13: 3540358293
DOWNLOAD EBOOKAuthor: Yair Shapira
Publisher:
Published: 2021
Total Pages: 678
ISBN-13: 9789811240065
DOWNLOAD EBOOKAuthor: Peter Woit
Publisher: Springer
Published: 2017-11-01
Total Pages: 659
ISBN-13: 3319646125
DOWNLOAD EBOOKThis text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.
Author: Howard Georgi
Publisher: Westview Press
Published: 1999-10-22
Total Pages: 340
ISBN-13: 0738202339
DOWNLOAD EBOOKAn exciting new edition of a classic text
Author: Jürgen Fuchs
Publisher: Cambridge University Press
Published: 1995-03-09
Total Pages: 452
ISBN-13: 9780521484121
DOWNLOAD EBOOKThis is an introduction to the theory of affine Lie Algebras, to the theory of quantum groups, and to the interrelationships between these two fields that are encountered in conformal field theory.
Author: Brian C. Hall
Publisher: Springer Science & Business Media
Published: 2013-06-19
Total Pages: 566
ISBN-13: 1461471168
DOWNLOAD EBOOKAlthough ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.
Author: Robert Gilmore
Publisher: Cambridge University Press
Published: 2008-01-17
Total Pages: 5
ISBN-13: 113946907X
DOWNLOAD EBOOKDescribing many of the most important aspects of Lie group theory, this book presents the subject in a 'hands on' way. Rather than concentrating on theorems and proofs, the book shows the applications of the material to physical sciences and applied mathematics. Many examples of Lie groups and Lie algebras are given throughout the text. The relation between Lie group theory and algorithms for solving ordinary differential equations is presented and shown to be analogous to the relation between Galois groups and algorithms for solving polynomial equations. Other chapters are devoted to differential geometry, relativity, electrodynamics, and the hydrogen atom. Problems are given at the end of each chapter so readers can monitor their understanding of the materials. This is a fascinating introduction to Lie groups for graduate and undergraduate students in physics, mathematics and electrical engineering, as well as researchers in these fields.
Author: John Stillwell
Publisher: Springer Science & Business Media
Published: 2008-12-15
Total Pages: 230
ISBN-13: 038778215X
DOWNLOAD EBOOKIn this new textbook, acclaimed author John Stillwell presents a lucid introduction to Lie theory suitable for junior and senior level undergraduates. In order to achieve this, he focuses on the so-called "classical groups'' that capture the symmetries of real, complex, and quaternion spaces. These symmetry groups may be represented by matrices, which allows them to be studied by elementary methods from calculus and linear algebra. This naive approach to Lie theory is originally due to von Neumann, and it is now possible to streamline it by using standard results of undergraduate mathematics. To compensate for the limitations of the naive approach, end of chapter discussions introduce important results beyond those proved in the book, as part of an informal sketch of Lie theory and its history. John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including The Four Pillars of Geometry (2005), Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).
Author: Francesco Iachello
Publisher: Springer
Published: 2007-02-22
Total Pages: 208
ISBN-13: 3540362398
DOWNLOAD EBOOKThis book, designed for advanced graduate students and post-graduate researchers, introduces Lie algebras and some of their applications to the spectroscopy of molecules, atoms, nuclei and hadrons. The book contains many examples that help to elucidate the abstract algebraic definitions. It provides a summary of many formulas of practical interest, such as the eigenvalues of Casimir operators and the dimensions of the representations of all classical Lie algebras.
Author: George Lusztig
Publisher: Springer Science & Business Media
Published: 2010-10-27
Total Pages: 361
ISBN-13: 0817647171
DOWNLOAD EBOOKThe quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.