Lessons in Estimation Theory for Signal Processing, Communications, and Control

Lessons in Estimation Theory for Signal Processing, Communications, and Control

Author: Jerry M. Mendel

Publisher: Pearson Education

Published: 1995-03-14

Total Pages: 891

ISBN-13: 0132440792

DOWNLOAD EBOOK

Estimation theory is a product of need and technology. As a result, it is an integral part of many branches of science and engineering. To help readers differentiate among the rich collection of estimation methods and algorithms, this book describes in detail many of the important estimation methods and shows how they are interrelated. Written as a collection of lessons, this book introduces readers o the general field of estimation theory and includes abundant supplementary material.


Model-Based Signal Processing

Model-Based Signal Processing

Author: James V. Candy

Publisher: John Wiley & Sons

Published: 2005-10-27

Total Pages: 702

ISBN-13: 0471732664

DOWNLOAD EBOOK

A unique treatment of signal processing using a model-based perspective Signal processing is primarily aimed at extracting useful information, while rejecting the extraneous from noisy data. If signal levels are high, then basic techniques can be applied. However, low signal levels require using the underlying physics to correct the problem causing these low levels and extracting the desired information. Model-based signal processing incorporates the physical phenomena, measurements, and noise in the form of mathematical models to solve this problem. Not only does the approach enable signal processors to work directly in terms of the problem's physics, instrumentation, and uncertainties, but it provides far superior performance over the standard techniques. Model-based signal processing is both a modeler's as well as a signal processor's tool. Model-Based Signal Processing develops the model-based approach in a unified manner and follows it through the text in the algorithms, examples, applications, and case studies. The approach, coupled with the hierarchy of physics-based models that the author develops, including linear as well as nonlinear representations, makes it a unique contribution to the field of signal processing. The text includes parametric (e.g., autoregressive or all-pole), sinusoidal, wave-based, and state-space models as some of the model sets with its focus on how they may be used to solve signal processing problems. Special features are provided that assist readers in understanding the material and learning how to apply their new knowledge to solving real-life problems. * Unified treatment of well-known signal processing models including physics-based model sets * Simple applications demonstrate how the model-based approach works, while detailed case studies demonstrate problem solutions in their entirety from concept to model development, through simulation, application to real data, and detailed performance analysis * Summaries provided with each chapter ensure that readers understand the key points needed to move forward in the text as well as MATLAB(r) Notes that describe the key commands and toolboxes readily available to perform the algorithms discussed * References lead to more in-depth coverage of specialized topics * Problem sets test readers' knowledge and help them put their new skills into practice The author demonstrates how the basic idea of model-based signal processing is a highly effective and natural way to solve both basic as well as complex processing problems. Designed as a graduate-level text, this book is also essential reading for practicing signal-processing professionals and scientists, who will find the variety of case studies to be invaluable. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department


Digital Signal Processing Handbook on CD-ROM

Digital Signal Processing Handbook on CD-ROM

Author: VIJAY MADISETTI

Publisher: CRC Press

Published: 1999-02-26

Total Pages: 1725

ISBN-13: 0849321352

DOWNLOAD EBOOK

A best-seller in its print version, this comprehensive CD-ROM reference contains unique, fully searchable coverage of all major topics in digital signal processing (DSP), establishing an invaluable, time-saving resource for the engineering community. Its unique and broad scope includes contributions from all DSP specialties, including: telecommunications, computer engineering, acoustics, seismic data analysis, DSP software and hardware, image and video processing, remote sensing, multimedia applications, medical technology, radar and sonar applications


Digital Signal Processing Fundamentals

Digital Signal Processing Fundamentals

Author: Vijay Madisetti

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 904

ISBN-13: 1420046071

DOWNLOAD EBOOK

Now available in a three-volume set, this updated and expanded edition of the bestselling The Digital Signal Processing Handbook continues to provide the engineering community with authoritative coverage of the fundamental and specialized aspects of information-bearing signals in digital form. Encompassing essential background material, technical details, standards, and software, the second edition reflects cutting-edge information on signal processing algorithms and protocols related to speech, audio, multimedia, and video processing technology associated with standards ranging from WiMax to MP3 audio, low-power/high-performance DSPs, color image processing, and chips on video. Drawing on the experience of leading engineers, researchers, and scholars, the three-volume set contains 29 new chapters that address multimedia and Internet technologies, tomography, radar systems, architecture, standards, and future applications in speech, acoustics, video, radar, and telecommunications. Emphasizing theoretical concepts, Digital Signal Processing Fundamentals provides comprehensive coverage of the basic foundations of DSP and includes the following parts: Signals and Systems; Signal Representation and Quantization; Fourier Transforms; Digital Filtering; Statistical Signal Processing; Adaptive Filtering; Inverse Problems and Signal Reconstruction; and Time–Frequency and Multirate Signal Processing.


Bayesian Signal Processing

Bayesian Signal Processing

Author: James V. Candy

Publisher: John Wiley & Sons

Published: 2011-09-20

Total Pages: 404

ISBN-13: 1118210549

DOWNLOAD EBOOK

New Bayesian approach helps you solve tough problems in signal processing with ease Signal processing is based on this fundamental concept—the extraction of critical information from noisy, uncertain data. Most techniques rely on underlying Gaussian assumptions for a solution, but what happens when these assumptions are erroneous? Bayesian techniques circumvent this limitation by offering a completely different approach that can easily incorporate non-Gaussian and nonlinear processes along with all of the usual methods currently available. This text enables readers to fully exploit the many advantages of the "Bayesian approach" to model-based signal processing. It clearly demonstrates the features of this powerful approach compared to the pure statistical methods found in other texts. Readers will discover how easily and effectively the Bayesian approach, coupled with the hierarchy of physics-based models developed throughout, can be applied to signal processing problems that previously seemed unsolvable. Bayesian Signal Processing features the latest generation of processors (particle filters) that have been enabled by the advent of high-speed/high-throughput computers. The Bayesian approach is uniformly developed in this book's algorithms, examples, applications, and case studies. Throughout this book, the emphasis is on nonlinear/non-Gaussian problems; however, some classical techniques (e.g. Kalman filters, unscented Kalman filters, Gaussian sums, grid-based filters, et al) are included to enable readers familiar with those methods to draw parallels between the two approaches. Special features include: Unified Bayesian treatment starting from the basics (Bayes's rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation techniques (sequential Monte Carlo sampling) Incorporates "classical" Kalman filtering for linear, linearized, and nonlinear systems; "modern" unscented Kalman filters; and the "next-generation" Bayesian particle filters Examples illustrate how theory can be applied directly to a variety of processing problems Case studies demonstrate how the Bayesian approach solves real-world problems in practice MATLAB notes at the end of each chapter help readers solve complex problems using readily available software commands and point out software packages available Problem sets test readers' knowledge and help them put their new skills into practice The basic Bayesian approach is emphasized throughout this text in order to enable the processor to rethink the approach to formulating and solving signal processing problems from the Bayesian perspective. This text brings readers from the classical methods of model-based signal processing to the next generation of processors that will clearly dominate the future of signal processing for years to come. With its many illustrations demonstrating the applicability of the Bayesian approach to real-world problems in signal processing, this text is essential for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.


Signal Processing

Signal Processing

Author: James Vincent Candy

Publisher: John Wiley & Sons

Published: 2024-11-27

Total Pages: 484

ISBN-13: 1394207441

DOWNLOAD EBOOK

Separate signals from noise with this valuable introduction to signal processing by applied decomposition The decomposition of complex signals into their sub-signals or individual components is a crucial tool in signal processing. It allows each component of a signal to be analyzed individually and enables the signal to be isolated from noise and processed in full. Decomposition processes have not always been widely adopted due to the difficult underlying mathematics and complex applications. This text simplifies these obstacles. Signal Processing: An Applied Decomposition Approach demystifies these tools from a model-based perspective. This offers a mathematically informed, “step-by-step” analysis of the process by breaking down a composite signal/system into its constituent parts, while introducing both fundamental concepts and advanced applications. This comprehensive approach addresses each of the major decomposition techniques, making it an indispensable addition to any library specializing in signal processing. Signal Processing readers will find: Signal decomposition techniques developed from the data-based, spectral-based and model-based perspectives incorporate: statistical approaches (PCA, ICA, Singular Spectrum); spectral approaches (MTM, PHD, MUSIC); and model-based approaches (EXP, LATTICE, SSP) In depth discussion of topics includes signal/system estimation and decomposition, time domain and frequency domain techniques, systems theory, modal decompositions, applications and many more Numerous figures, examples, and tables illustrating key concepts and algorithms are developed throughout the text Includes problem sets, case studies, real-world applications as well as MATLAB notes highlighting applicable commands Signal Processing is ideal for engineering and scientific professionals, as well as graduate students seeking a focused text on signal/system decomposition with performance metrics and real-world applications.


Model-Based Processing

Model-Based Processing

Author: James V. Candy

Publisher: John Wiley & Sons

Published: 2019-03-15

Total Pages: 599

ISBN-13: 1119457785

DOWNLOAD EBOOK

A bridge between the application of subspace-based methods for parameter estimation in signal processing and subspace-based system identification in control systems Model-Based Processing: An Applied Subspace Identification Approach provides expert insight on developing models for designing model-based signal processors (MBSP) employing subspace identification techniques to achieve model-based identification (MBID) and enables readers to evaluate overall performance using validation and statistical analysis methods. Focusing on subspace approaches to system identification problems, this book teaches readers to identify models quickly and incorporate them into various processing problems including state estimation, tracking, detection, classification, controls, communications, and other applications that require reliable models that can be adapted to dynamic environments. The extraction of a model from data is vital to numerous applications, from the detection of submarines to determining the epicenter of an earthquake to controlling an autonomous vehicles—all requiring a fundamental understanding of their underlying processes and measurement instrumentation. Emphasizing real-world solutions to a variety of model development problems, this text demonstrates how model-based subspace identification system identification enables the extraction of a model from measured data sequences from simple time series polynomials to complex constructs of parametrically adaptive, nonlinear distributed systems. In addition, this resource features: Kalman filtering for linear, linearized, and nonlinear systems; modern unscented Kalman filters; as well as Bayesian particle filters Practical processor designs including comprehensive methods of performance analysis Provides a link between model development and practical applications in model-based signal processing Offers in-depth examination of the subspace approach that applies subspace algorithms to synthesized examples and actual applications Enables readers to bridge the gap from statistical signal processing to subspace identification Includes appendices, problem sets, case studies, examples, and notes for MATLAB Model-Based Processing: An Applied Subspace Identification Approach is essential reading for advanced undergraduate and graduate students of engineering and science as well as engineers working in industry and academia.


MATLAB/Simulink for Digital Signal Processing

MATLAB/Simulink for Digital Signal Processing

Author: Won Y. Yang

Publisher: Won Y. Yang

Published: 2015-03-02

Total Pages: 518

ISBN-13: 8972839965

DOWNLOAD EBOOK

Chapter 1: Fourier Analysis................................................................................................................... 1 1.1 CTFS, CTFT, DTFT, AND DFS/DFT....................................................................................... 1 1.2 SAMPLING THEOREM.......................................................................................................... 16 1.3 FAST FOURIER TRANSFORM (FFT)................................................................................. 19 1.3.1 Decimation-in-Time (DIT) FFT..................................................................................... 19 1.3.2 Decimation-in-Frequency (DIF) FFT............................................................................ 22 1.3.3 Computation of IDFT Using FFT Algorithm................................................................ 23 1.4 INTERPRETATION OF DFT RESULTS............................................................................. 23 1.5 EFFECTS OF SIGNAL OPERATIONS ON DFT SPECTRUM....................................... 31 1.6 SHORT-TIME FOURIER TRANSFORM - STFT.............................................................. 32 Chapter 2: System Function, Impulse Response, and Frequency Response........................ 51 2.1 THE INPUT-OUTPUT RELATIONSHIP OF A DISCRETE-TIME LTI SYSTEM..... 52 2.1.1 Convolution...................................................................................................................... 52 2.1.2 System Function and Frequency Response................................................................... 54 2.1.3 Time Response................................................................................................................. 55 2.2 COMPUTATION OF LINEAR CONVOLUTION USING DFT...................................... 55 2.3 PHYSICAL MEANING OF SYSTEM FUNCTION AND FREQUENCY RESPONSE 58 Chapter 3: Correlation and Power Spectrum................................................................ 73 3.1 CORRELATION SEQUENCE................................................................................................ 73 3.1.1 Crosscorrelation............................................................................................................... 73 3.1.2 Autocorrelation.............................................................................................................. 76 3.1.3 Matched Filter................................................................................................................ 80 3.2 POWER SPECTRAL DENSITY (PSD)................................................................................. 83 3.2.1 Periodogram PSD Estimator........................................................................................... 84 3.2.2 Correlogram PSD Estimator......................................................................................... 85 3.2.3 Physical Meaning of Periodogram............................................................................... 85 3.3 POWER SPECTRUM, FREQUENCY RESPONSE, AND COHERENCE..................... 89 3.3.1 PSD and Frequency Response........................................................................................ 90 3.3.2 PSD and Coherence....................................................................................................... 91 3.4 COMPUTATION OF CORRELATION USING DFT ...................................................... 94 Chapter 4: Digital Filter Structure................................................................................ 99 4.1 INTRODUCTION...................................................................................................................... 99 4.2 DIRECT STRUCTURE ........................................................................................................ 101 4.2.1 Cascade Form................................................................................................................ 102 4.2.2 Parallel Form............................................................................................................... 102 4.3 LATTICE STRUCTURE ..................................................................................................... 104 4.3.1 Recursive Lattice Form................................................................................................. 106 4.3.2 Nonrecursive Lattice Form........................................................................................... 112 4.4 LINEAR-PHASE FIR STRUCTURE ................................................................................ 114 4.4.1 FIR Filter with Symmetric Coefficients...................................................................... 115 4.4.2 FIR Filter with Anti-Symmetric Coefficients........................................................... 115 4.5 FREQUENCY-SAMPLING (FRS) STRUCTURE .......................................................... 118 4.5.1 Recursive FRS Form..................................................................................................... 118 4.5.2 Nonrecursive FRS Form............................................................................................. 124 4.6 FILTER STRUCTURES IN MATLAB ............................................................................. 126 4.7 SUMMARY ............................................................................................................................ 130 Chapter 5: Filter Design.............................................................................................. 137 5.1 ANALOG FILTER DESIGN................................................................................................. 137 5.2 DISCRETIZATION OF ANALOG FILTER.................................................................... 145 5.2.1 Impulse-Invariant Transformation............................................................................. 145 5.2.2 Step-Invariant Transformation - Z.O.H. (Zero-Order-Hold) Equivalent .............. 146 5.2.3 Bilinear Transformation (BLT).................................................................................. 147 5.3 DIGITAL FILTER DESIGN................................................................................................. 150 5.3.1 IIR Filter Design............................................................................................................ 151 5.3.2 FIR Filter Design......................................................................................................... 160 5.4 FDATOOL................................................................................................................................ 171 5.4.1 Importing/Exporting a Filter Design Object................................................................ 172 5.4.2 Filter Structure Conversion........................................................................................ 174 5.5 FINITE WORDLENGTH EFFECT..................................................................................... 180 5.5.1 Quantization Error......................................................................................................... 180 5.5.2 Coefficient Quantization............................................................................................. 182 5.5.3 Limit Cycle.................................................................................................................. 185 5.6 FILTER DESIGN TOOLBOX ............................................................................................ 193 Chapter 6: Spectral Estimation................................................................................... 205 6.1 CLASSICAL SPECTRAL ESTIMATION.......................................................................... 205 6.1.1 Correlogram PSD Estimator......................................................................................... 205 6.1.2 Periodogram PSD Estimator....................................................................................... 206 6.2 MODERN SPECTRAL ESTIMATION ............................................................................ 208 6.2.1 FIR Wiener Filter........................................................................................................ 208 6.2.2 Prediction Error and White Noise.............................................................................. 212 6.2.3 Levinson Algorithm.................................................................................................... 214 6.2.4 Burg Algorithm........................................................................................................... 217 6.2.5 Various Modern Spectral Estimation Methods......................................................... 219 6.3 SPTOOL .................................................................................................................................. 224 Chapter 7: DoA Estimation......................................................................................... 241 7.1 BEAMFORMING AND NULL STEERING...................................................................... 244 7.1.1 Beamforming................................................................................................................. 244 7.1.2 Null Steering................................................................................................................ 248 7.2 CONVENTIONAL METHODS FOR DOA ESTIATION................................................ 250 7.2.1 Delay-and-Sum (or Fourier) Method - Classical Beamformer.................................. 250 7.2.2 Capon's Minimum Variance Method......................................................................... 252 7.3 SUBSPACE METHODS FOR DOA ESTIATION............................................................ 253 7.3.1 MUSIC (MUltiple SIgnal Classification) Algorithm................................................. 253 7.3.2 Root-MUSIC Algorithm............................................................................................. 254 7.3.3 ESPRIT Algorithm...................................................................................................... 256 7.4 SPATIAL SMOOTHING TECHNIQUES ........................................................................ 258 Chapter 8: Kalman Filter and Wiener Filter............................................................. 267 8.1 DISCRETE-TIME KALMAN FILTER.............................................................................. 267 8.1.1 Conditional Expectation/Covariance of Jointly Gaussian Random Vectors............. 267 8.1.2 Stochastic Statistic Observer...................................................................................... 270 8.1.3 Kalman Filter for Nonstandard Cases........................................................................ 276 8.1.4 Extended Kalman Filter (EKF).................................................................................. 286 8.1.5 Unscented Kalman Filter (UKF)................................................................................ 288 8.2 DISCRETE-TIME WIENER FILTER .............................................................................. 291 Chapter 9: Adaptive Filter.......................................................................................... 301 9.1 OPTIMAL FIR FILTER........................................................................................................ 301 9.1.1 Least Squares Method................................................................................................... 302 9.1.2 Least Mean Squares Method...................................................................................... 304 9.2 ADAPTIVE FILTER ............................................................................................................ 306 9.2.1 Gradient Search Approach - LMS Method.................................................................. 306 9.2.2 Modified Versions of LMS Method........................................................................... 310 9.3 MORE EXAMPLES OF ADAPTIVE FILTER ............................................................... 316 9.4 RECURSIVE LEAST-SQUARES ESTIMATION .......................................................... 320 Chapter 10: Multi-Rate Signal Processing and Wavelet Transform............................ 329 10.1 MULTIRATE FILTER........................................................................................................ 329 10.1.1 Decimation and Interpolation..................................................................................... 330 10.1.2 Sampling Rate Conversion....................................................................................... 334 10.1.3 Decimator/Interpolator Polyphase Filters................................................................ 335 10.1.4 Multistage Filters........................................................................................................ 339 10.1.5 Nyquist (M) Filters and Half-Band Filters.............................................................. 348 10.2 TWO-CHANNEL FILTER BANK ................................................................................... 351 10.2.1 Two-Channel SBC (SubBand Coding) Filter Bank.................................................. 351 10.2.2 Standard QMF (Quadrature Mirror Filter) Bank.................................................... 352 10.2.3 PR (Perfect Reconstruction) Conditions.................................................................. 353 10.2.4 CQF (Conjugate Quadrature Filter) Bank................................................................. 354 10.3 M-CHANNEL FILTER BANK ......................................................................................... 358 10.3.1 Complex-Modulated Filter Bank (DFT Filter Bank)................................................ 359 10.3.2 Cosine-Modulated Filter Bank................................................................................. 363 10.3.3 Dyadic (Octave) Filter Bank.................................................................................... 366 10.4 WAVELET TRANSFORM ............................................................................................... 369 10.4.1 Generalized Signal Transform................................................................................... 369 10.4.2 Multi-Resolution Signal Analysis............................................................................ 371 10.4.3 Filter Bank and Wavelet........................................................................................... 374 10.4.4 Properties of Wavelets and Scaling Functions.......................................................... 378 10.4.5 Wavelet, Scaling Function, and DWT Filters......................................................... 379 10.4.6 Wavemenu Toolbox and Examples of DWT.......................................................... 382 Chapter 11: Two-Dimensional Filtering...................................................................... 401 11.1 DIGITAL IMAGE TRANSFORM..................................................................................... 401 11.1.1 2-D DFT (Discrete Fourier Transform)..................................................................... 401 11.1.2 2-D DCT (Discrete Cosine Transform)................................................................... 402 11.1.3 2-D DWT (Discrete Wavelet Transform)................................................................ 404 11.2 DIGITAL IMAGE FILTERING ....................................................................................... 411 11.2.1 2-D Filtering................................................................................................................ 411 11.2.2 2-D Correlation......................................................................................................... 412 11.2.3 2-D Wiener Filter...................................................................................................... 412 11.2.4 Smoothing Using LPF or Median Filter.................................................................... 413 11.2.5 Sharpening Using HPF or Gradient/Laplacian-Based Filter.................................. 414