Bringing together leading researchers from particle physics, astrophysics, and cosmology, Lepton and Baryon Number Violation in Particle Physics, Astrophysics and Cosmology presents reviews of current theoretical ideas, experimental results, and future perspectives in this topical field. The book covers areas related to baryon number (B) and lepton number (L) violation in particle physics, nuclear physics, rare decays, and cosmology. The main topics include B and L violation and grand unified theories; B and L violation in the early universe, cosmology, and astrophysics; Lepton family number violation; and B and L violation and collider physics.
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant to particle physics and astrophysics, such as masses of heavy neutrinos, of sneutrinos, as SUSY models, compositeness, leptoquarks, left-right symmetric models, and tests of Lorentz symmetry and equivalence principle in the neutrino sector. Double beta decay has become indispensable nowadays for solving the problem of the neutrino mass spectrum and the structure of the neutrino mass matrix OCo together with present and future solar and atmospheric neutrino oscillation experiments. Some future double beta experiments (like GENIUS) will be capable to be simultaneously neutrino observatories for double beta decay and low-energy solar neutrinos, and observatories for cold dark matter of ultimate sensitivity. This invaluable book outlines the development of double beta research from its beginnings until its most recent achievements, and also presents the outlook for its highly exciting future. Contents: Double Beta Decay OCo Historical Retrospective and Perspectives; Original Articles: From the Early Days until the Gauge Theory Era; The Nuclear Physics Side OCo Nuclear Matrix Elements; The Nuclear Physics Side OCo Nuclear Matrix Elements; Effective Neutrino Masses from Double Beta Decay, Neutrino Mass Models and Cosmological Parameters OCo Present Status and Prospects; Other Beyond Standard Model Physics: From SUSY and Leptoquarks to Compositeness and Quantum Foam; The Experimental Race: From the Late Eighties to the Future; The Future of Double Beta Decay; Appendices: Ten Years of HeidelbergOCoMoscow Experiment; The Potential Future OCo GENIUS. Readership: Particle physicists, nuclear physicists and astrophysicists."
Nuclear double beta decay is one of the most promising tools for probing beyond-the-standard-model physics on beyond-accelerator energy scales. It is already now probing the TeV scale, on which new physics should manifest itself according to theoretical expectations. Only in the early 1980s was it known that double beta decay yields information on the Majorana mass of the exchanged neutrino. At present, the sharpest bound for the electron neutrino mass arises from this process. It is only in the last 10 years that the much more far-reaching potential of double beta decay has been discovered. Today, the potential of double beta decay includes a broad range of topics that are equally relevant to particle physics and astrophysics, such as masses of heavy neutrinos, of sneutrinos, as SUSY models, compositeness, leptoquarks, left-right symmetric models, and tests of Lorentz symmetry and equivalence principle in the neutrino sector. Double beta decay has become indispensable nowadays for solving the problem of the neutrino mass spectrum and the structure of the neutrino mass matrix — together with present and future solar and atmospheric neutrino oscillation experiments. Some future double beta experiments (like GENIUS) will be capable to be simultaneously neutrino observatories for double beta decay and low-energy solar neutrinos, and observatories for cold dark matter of ultimate sensitivity.This invaluable book outlines the development of double beta research from its beginnings until its most recent achievements, and also presents the outlook for its highly exciting future.
In a unique collaboration, Nature Publishing Group and Institute of Physics Publishing have published the most extensive and comprehensive reference work in astronomy and astrophysics. This unique resource covers the entire field of astronomy and astrophysics and this online version includes the full text of over 2,750 articles, plus sophisticated search and retrieval functionality and links to the primary literature. The Encyclopaedia's authority is assured by editorial and advisory boards drawn from the world's foremost astronomers and astrophysicists. This first class resource is an essential source of information for undergraduates, graduate students, researchers and seasoned professionals, as well as for committed amateurs, librarians and lay people wishing to consult the definitive astronomy and astrophysics reference work.
This handbook is a comprehensive, systematic source of modern nuclear physics. It aims to summarize experimental and theoretical discoveries and an understanding of unstable nuclei and their exotic structures, which were opened up by the development of radioactive ion (RI) beam in the late 1980s. The handbook comprises three major parts. In the first part, the experiments and measured facts are well organized and reviewed. The second part summarizes recognized theories to explain the experimental facts introduced in the first part. Reflecting recent synergistic progress involving both experiment and theory, the chapters both parts are mutually related. The last part focuses on cosmo-nuclear physics—one of the mainstream subjects in modern nuclear physics. Those comprehensive topics are presented concisely. Supported by introductory reviews, all chapters are designed to present their topics in a manner accessible to readers at the graduate level. The book therefore serves as a valuable source for beginners as well, helping them to learn modern nuclear physics.
In the last 20 years the disciplines of particle physics, astrophysics, nuclear physics and cosmology have grown together in an unprecedented way. A brilliant example is nuclear double beta decay, an extremely rare radioactive decay mode, which is one of the most exciting and important fields of research in particle physics at present and the flagship of non-accelerator particle physics.While already discussed in the 1930s, only in the 1980s was it understood that neutrinoless double beta decay can yield information on the Majorana mass of the neutrino, which has an impact on the structure of space-time. Today, double beta decay is indispensable for solving the problem of the neutrino mass spectrum and the structure of the neutrino mass matrix. The potential of double beta decay has also been extended such that it is now one of the most promising tools for probing beyond-the-standard-model particle physics, and gives access to energy scales beyond the potential of future accelerators.This book presents the breathtaking manner in which achievements in particle physics have been made from a nuclear physics process. Consisting of a 150-page highly factual overview of the field of double beta decay and a 1200-page collection of the most important original articles, the book outlines the development of double beta decay research — theoretical and experimental — from its humble beginnings until its most recent achievements, with its revolutionary consequences for the theory of particle physics. It further presents an outlook on the exciting future of the field.
Neutrinos are one of the most abundant particles in the universe. Because they have very little interaction with matter, however, they are incredibly difficult to detect. Neutrinos are similar to the more familiar electron, with one crucial difference: neutrinos do not carry electric charge. Because neutrinos are electrically neutral, they are not affected by the electromagnetic forces which act on electrons. Three types of neutrinos are known. Each type or 'flavour' of neutrino is related to a charged particle (which gives the corresponding neutrino its name). Hence, the 'electron neutrino' is associated with the electron, and two other neutrinos are associated with heavier versions of the electron called the muon and the tau. The book presents citations from the literature for the last three years from the journal literature and the existent book literature. Access is provided by subject, author and title indexes.
This is the third and fully updated edition of the classic textbook on physics at the subatomic level. An up-to-date and lucid introduction to both particle and nuclear physics, the book is suitable for both experimental and theoretical physics students at the senior undergraduate and beginning graduate levels.Topics are introduced with key experiments and their background, encouraging students to think and empowering them with the capability of doing back-of-the-envelope calculations in a diversity of situations. Earlier important experiments and concepts as well as topics of current interest are covered, with extensive use of photographs and figures to convey principal concepts and show experimental data.The coverage includes new material on:Detectors and acceleratorsNucleon elastic form factor dataNeutrinos, their masses and oscillationsChiral theories and effective field theories, and lattice QCDRelativistic heavy ions (RHIC)Nuclear structure far from the region of stabilityParticle astrophysics and cosmology
This book is written from the viewpoint that a deep connection exists between cosmology and particle physics. It presents the results and ideas on both the homogeneous and isotropic Universe at the hot stage of its evolution and in later stages. The main chapters describe in a systematic and pedagogical way established facts and concepts on the early and the present Universe. The comprehensive treatment, hence, serves as a modern introduction to this rapidly developing field of science. To help in reading the chapters without having to constantly consult other texts, essential materials from General Relativity and the theory of elementary particles are collected in the appendices. Various hypotheses dealing with unsolved problems of cosmology, and often alternative to each other, are discussed at a more advanced level. These concern dark matter, dark energy, matter-antimatter asymmetry, etc.Particle physics and cosmology underwent rapid development between the first and the second editions of this book. In the second edition, many chapters and sections have been revised, and numerical values of particle physics and cosmological parameters have been updated.
The two-volume book Gravitational Waves provides a comprehensive and detailed account of the physics of gravitational waves. While Volume 1 is devoted to the theory and experiments, Volume 2 discusses what can be learned from gravitational waves in astrophysics and in cosmology, by systematizing a large body of theoretical developments that have taken place over the last decades. The second volume also includes a detailed discussion of the first direct detections of gravitational waves. In the author's typical style, the theoretical results are generally derived afresh, clarifying or streamlining the existing derivations whenever possible, and providing a coherent and consistent picture of the field. The first volume of Gravitational Waves , which appeared in 2007, has established itself as the standard reference in the field. The scientific community has eagerly awaited this second volume. The recent direct detection of gravitational waves makes the topics in this book particularly timely.