A concise introduction to lens design, including the fundamental theory, concepts, methods and tools used in the field. Covering all the essential concepts and providing suggestions for further reading at the end of each chapter, this book is an essential resource for graduate students working in optics and photonics.
There is no shortage of lens optimization software on the market to deal with today's complex optical systems for all sorts of custom and standardized applications. But all of these software packages share one critical flaw: you still have to design a starting solution. Continuing the bestselling tradition of the author's previous books, Lens Design, Fourth Edition is still the most complete and reliable guide for detailed design information and procedures for a wide range of optical systems. Milton Laikin draws on his varied and extensive experience, ranging from innovative cinematographic and special-effects optical systems to infrared and underwater lens systems, to cover a vast range of special-purpose optical systems and their detailed design and analysis. This edition has been updated to replace obsolete glass types and now includes several new designs and sections on stabilized systems, the human eye, spectrographic systems, and diffractive systems. A new CD-ROM accompanies this edition, offering extensive lens prescription data and executable ZEMAX files corresponding to figures in the text. Filled with sage advice and completely illustrated, Lens Design, Fourth Edition supplies hands-on guidance for the initial design and final optimization for a plethora of commercial, consumer, and specialized optical systems.
A Practical Guide to Lens Design focuses on the very detailed practical process of lens design. Every step from setup specifications to finalizing the design for production is discussed in a straight forward, tangible way. Design examples of several widely used modern lenses are provided. Optics basics are introduced and basic functions of Zemax are described. Zemax will be used throughout the book.
The process of designing lenses is both an art and a science. While advances in the field over the past two centuries have done much to transform it from the former category to the latter, much of the lens design process remains encapsulated in the experience and knowledge of industry veterans. This SPIE Field Guide provides a working reference for practicing physicists, engineers, and scientists for deciphering the nuances of basic lens design.
Unlike the first edition, which was more a collection of lens designs for use in larger projects, the 2nd edition of Modern Lens Design is an optical “how-to.” Delving deep into the mechanics of lens design, optics legend Warren J. Smith reveals time-tested methods for designing top-quality lenses. He deals with lens design software, primarily OSLO, by far the current market leaders, and provides 7 comprehensive worked examples, all new to this edition. With this book in hand, there’s no lens an optical engineer can’t design.
A large part of this book is devoted to a study of possible design procedures for various types of lens or mirror systems, with fully worked examples of each. The reader is urged to follow the logic of these examples and be sure that he understands what is happening, noticing particularly how each available degree of freedom is used to control one aberration. Not every type of lens has been considered, of course, but the design techniques illustrated here can readily be applied to the design of other more complex systems. It is assumed that the reader has access to a small computer to help with the ray tracing, otherwise he may find the computations so time-consuming that he is liable to lose track of what he is trying to accomplish.
Good game design happens when you view your game from as many perspectives as possible. Written by one of the world's top game designers, The Art of Game Design presents 100+ sets of questions, or different lenses, for viewing a game’s design, encompassing diverse fields such as psychology, architecture, music, visual design, film, software engineering, theme park design, mathematics, puzzle design, and anthropology. This Second Edition of a Game Developer Front Line Award winner: Describes the deepest and most fundamental principles of game design Demonstrates how tactics used in board, card, and athletic games also work in top-quality video games Contains valuable insight from Jesse Schell, the former chair of the International Game Developers Association and award-winning designer of Disney online games The Art of Game Design, Second Edition gives readers useful perspectives on how to make better game designs faster. It provides practical instruction on creating world-class games that will be played again and again.
This book gives a comprehensive overview of the principles of optical imaging. The first seven chapters provide an extensive summary of optical design, as well as the mechanisms and interrelations leading to the formation of aberrations and the accompanying decrease in imaging performance. Aside from the fundamentals of optics and imaging models, topics covered include calculations of simple optical components and systems, characterisation and quantification of aberrations and defects in optical systems, and optimisation of imaging performance. The second part focuses on problem-based learning via multiple exercises and case examples derived from the first seven chapters. It is an ideal guide for optics and photonics students. Key Features Provides a comprehensive, simplified overview of optical imaging Focuses on practical training by providing worked examples, case studies and exercises including solutions Presents interrelationships and dependencies in optical systems by visualisation via free software Contains chapter summaries listing the most important aspects Includes a formulary and further reading list
Optical System Design covers the basic knowledge of optics and the flow of light through an optical system. This book is organized into 16 chapters that deal with various components of an optical system, from light and images to spectroscopic apparatus. The book first discusses the simple components of an optical system, including its light, lens, oblique beams, and photochemical aspects. It then deals with the system's projection, plane mirrors, prisms, magnifying instruments, and telescope. Other components considered are the surveying instruments, mirror imaging systems, photographic optics, and spectroscopic apparatus. This book is of value to undergraduate students with courses in geometrical optics and system design.