Lectures on the h-Cobordism Theorem

Lectures on the h-Cobordism Theorem

Author: John Milnor

Publisher: Princeton University Press

Published: 2015-12-08

Total Pages: 123

ISBN-13: 1400878055

DOWNLOAD EBOOK

These lectures provide students and specialists with preliminary and valuable information from university courses and seminars in mathematics. This set gives new proof of the h-cobordism theorem that is different from the original proof presented by S. Smale. Originally published in 1965. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Lectures on the h-Cobordism Theorem

Lectures on the h-Cobordism Theorem

Author: John Milnor

Publisher: Princeton University Press

Published: 2025-03-25

Total Pages: 125

ISBN-13: 0691273715

DOWNLOAD EBOOK

Important lectures on differential topology by acclaimed mathematician John Milnor These are notes for lectures that John Milnor delivered as a seminar on differential topology in 1963 at Princeton University. These lectures give new proof of the h-cobordism theorem that is different from the original proof presented by S. Smale.


Lectures on Field Theory and Topology

Lectures on Field Theory and Topology

Author: Daniel S. Freed

Publisher: American Mathematical Soc.

Published: 2019-08-23

Total Pages: 186

ISBN-13: 1470452065

DOWNLOAD EBOOK

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.


Handbook of K-Theory

Handbook of K-Theory

Author: Eric Friedlander

Publisher: Springer Science & Business Media

Published: 2005-07-18

Total Pages: 1148

ISBN-13: 354023019X

DOWNLOAD EBOOK

This handbook offers a compilation of techniques and results in K-theory. Each chapter is dedicated to a specific topic and is written by a leading expert. Many chapters present historical background; some present previously unpublished results, whereas some present the first expository account of a topic; many discuss future directions as well as open problems. It offers an exposition of our current state of knowledge as well as an implicit blueprint for future research.


Introduction to the $h$-Principle

Introduction to the $h$-Principle

Author: K. Cieliebak

Publisher: American Mathematical Society

Published: 2024-01-30

Total Pages: 384

ISBN-13: 1470476177

DOWNLOAD EBOOK

In differential geometry and topology one often deals with systems of partial differential equations as well as partial differential inequalities that have infinitely many solutions whatever boundary conditions are imposed. It was discovered in the 1950s that the solvability of differential relations (i.e., equations and inequalities) of this kind can often be reduced to a problem of a purely homotopy-theoretic nature. One says in this case that the corresponding differential relation satisfies the $h$-principle. Two famous examples of the $h$-principle, the Nash–Kuiper $C^1$-isometric embedding theory in Riemannian geometry and the Smale–Hirsch immersion theory in differential topology, were later transformed by Gromov into powerful general methods for establishing the $h$-principle. The authors cover two main methods for proving the $h$-principle: holonomic approximation and convex integration. The reader will find that, with a few notable exceptions, most instances of the $h$-principle can be treated by the methods considered here. A special emphasis is made on applications to symplectic and contact geometry. The present book is the first broadly accessible exposition of the theory and its applications, making it an excellent text for a graduate course on geometric methods for solving partial differential equations and inequalities. Geometers, topologists, and analysts will also find much value in this very readable exposition of an important and remarkable topic. This second edition of the book is significantly revised and expanded to almost twice of the original size. The most significant addition to the original book is the new part devoted to the method of wrinkling and its applications. Several other chapters (e.g., on multivalued holonomic approximation and foliations) are either added or completely rewritten.


Introduction to Geometry and Topology

Introduction to Geometry and Topology

Author: Werner Ballmann

Publisher: Birkhäuser

Published: 2018-07-18

Total Pages: 174

ISBN-13: 3034809832

DOWNLOAD EBOOK

This book provides an introduction to topology, differential topology, and differential geometry. It is based on manuscripts refined through use in a variety of lecture courses. The first chapter covers elementary results and concepts from point-set topology. An exception is the Jordan Curve Theorem, which is proved for polygonal paths and is intended to give students a first glimpse into the nature of deeper topological problems. The second chapter of the book introduces manifolds and Lie groups, and examines a wide assortment of examples. Further discussion explores tangent bundles, vector bundles, differentials, vector fields, and Lie brackets of vector fields. This discussion is deepened and expanded in the third chapter, which introduces the de Rham cohomology and the oriented integral and gives proofs of the Brouwer Fixed-Point Theorem, the Jordan-Brouwer Separation Theorem, and Stokes's integral formula. The fourth and final chapter is devoted to the fundamentals of differential geometry and traces the development of ideas from curves to submanifolds of Euclidean spaces. Along the way, the book discusses connections and curvature--the central concepts of differential geometry. The discussion culminates with the Gauß equations and the version of Gauß's theorema egregium for submanifolds of arbitrary dimension and codimension. This book is primarily aimed at advanced undergraduates in mathematics and physics and is intended as the template for a one- or two-semester bachelor's course.


Homology Theory

Homology Theory

Author: James W. Vick

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 258

ISBN-13: 1461208815

DOWNLOAD EBOOK

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.