Lectures on Set Theoretic Topology

Lectures on Set Theoretic Topology

Author: Mary Ellen Rudin

Publisher: American Mathematical Soc.

Published: 1975-12-31

Total Pages: 82

ISBN-13: 082181673X

DOWNLOAD EBOOK

This survey presents some recent results connecting set theory with the problems of general topology, primarily giving the applications of classical set theory in general topology and not considering problems involving large numbers. The lectures are completely self-contained--this is a good reference book on modern questions of general topology and can serve as an introduction to the applications of set theory and infinite combinatorics.


Sets and Extensions in the Twentieth Century

Sets and Extensions in the Twentieth Century

Author:

Publisher: Elsevier

Published: 2012-01-24

Total Pages: 878

ISBN-13: 0080930662

DOWNLOAD EBOOK

Set theory is an autonomous and sophisticated field of mathematics that is extremely successful at analyzing mathematical propositions and gauging their consistency strength. It is as a field of mathematics that both proceeds with its own internal questions and is capable of contextualizing over a broad range, which makes set theory an intriguing and highly distinctive subject. This handbook covers the rich history of scientific turning points in set theory, providing fresh insights and points of view. Written by leading researchers in the field, both this volume and the Handbook as a whole are definitive reference tools for senior undergraduates, graduate students and researchers in mathematics, the history of philosophy, and any discipline such as computer science, cognitive psychology, and artificial intelligence, for whom the historical background of his or her work is a salient consideration - Serves as a singular contribution to the intellectual history of the 20th century - Contains the latest scholarly discoveries and interpretative insights


Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups

Fourier and Fourier-Stieltjes Algebras on Locally Compact Groups

Author: Eberhard Kaniuth

Publisher: American Mathematical Soc.

Published: 2018-07-05

Total Pages: 321

ISBN-13: 0821853651

DOWNLOAD EBOOK

The theory of the Fourier algebra lies at the crossroads of several areas of analysis. Its roots are in locally compact groups and group representations, but it requires a considerable amount of functional analysis, mainly Banach algebras. In recent years it has made a major connection to the subject of operator spaces, to the enrichment of both. In this book two leading experts provide a road map to roughly 50 years of research detailing the role that the Fourier and Fourier-Stieltjes algebras have played in not only helping to better understand the nature of locally compact groups, but also in building bridges between abstract harmonic analysis, Banach algebras, and operator algebras. All of the important topics have been included, which makes this book a comprehensive survey of the field as it currently exists. Since the book is, in part, aimed at graduate students, the authors offer complete and readable proofs of all results. The book will be well received by the community in abstract harmonic analysis and will be particularly useful for doctoral and postdoctoral mathematicians conducting research in this important and vibrant area.


Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras

Banach Algebras and the General Theory of *-Algebras: Volume 1, Algebras and Banach Algebras

Author: Theodore W. Palmer

Publisher: Cambridge University Press

Published: 1994-03-25

Total Pages: 820

ISBN-13: 9780521366373

DOWNLOAD EBOOK

This is the first volume of a two volume set that provides a modern account of basic Banach algebra theory including all known results on general Banach *-algebras. This account emphasizes the role of *-algebraic structure and explores the algebraic results that underlie the theory of Banach algebras and *-algebras. The first volume, which contains previously unpublished results, is an independent, self-contained reference on Banach algebra theory. Each topic is treated in the maximum interesting generality within the framework of some class of complex algebras rather than topological algebras. Proofs are presented in complete detail at a level accessible to graduate students. The book contains a wealth of historical comments, background material, examples, particularly in noncommutative harmonic analysis, and an extensive bibliography. Volume II is forthcoming.