Lecture Notes on Mean Curvature Flow

Lecture Notes on Mean Curvature Flow

Author: Carlo Mantegazza

Publisher: Springer Science & Business Media

Published: 2011-07-28

Total Pages: 175

ISBN-13: 3034801459

DOWNLOAD EBOOK

This book is an introduction to the subject of mean curvature flow of hypersurfaces with special emphasis on the analysis of singularities. This flow occurs in the description of the evolution of numerous physical models where the energy is given by the area of the interfaces. These notes provide a detailed discussion of the classical parametric approach (mainly developed by R. Hamilton and G. Huisken). They are well suited for a course at PhD/PostDoc level and can be useful for any researcher interested in a solid introduction to the technical issues of the field. All the proofs are carefully written, often simplified, and contain several comments. Moreover, the author revisited and organized a large amount of material scattered around in literature in the last 25 years.


Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

Lecture Notes on Mean Curvature Flow: Barriers and Singular Perturbations

Author: Giovanni Bellettini

Publisher: Springer

Published: 2014-05-13

Total Pages: 336

ISBN-13: 8876424296

DOWNLOAD EBOOK

The aim of the book is to study some aspects of geometric evolutions, such as mean curvature flow and anisotropic mean curvature flow of hypersurfaces. We analyze the origin of such flows and their geometric and variational nature. Some of the most important aspects of mean curvature flow are described, such as the comparison principle and its use in the definition of suitable weak solutions. The anisotropic evolutions, which can be considered as a generalization of mean curvature flow, are studied from the view point of Finsler geometry. Concerning singular perturbations, we discuss the convergence of the Allen–Cahn (or Ginsburg–Landau) type equations to (possibly anisotropic) mean curvature flow before the onset of singularities in the limit problem. We study such kinds of asymptotic problems also in the static case, showing convergence to prescribed curvature-type problems.


Brakke's Mean Curvature Flow

Brakke's Mean Curvature Flow

Author: Yoshihiro Tonegawa

Publisher: Springer

Published: 2019-04-09

Total Pages: 108

ISBN-13: 9811370753

DOWNLOAD EBOOK

This book explains the notion of Brakke’s mean curvature flow and its existence and regularity theories without assuming familiarity with geometric measure theory. The focus of study is a time-parameterized family of k-dimensional surfaces in the n-dimensional Euclidean space (1 ≤ k in


Mean Curvature Flow

Mean Curvature Flow

Author: Theodora Bourni

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2020-12-07

Total Pages: 149

ISBN-13: 3110618362

DOWNLOAD EBOOK

With contributions by leading experts in geometric analysis, this volume is documenting the material presented in the John H. Barrett Memorial Lectures held at the University of Tennessee, Knoxville, on May 29 - June 1, 2018. The central topic of the 2018 lectures was mean curvature flow, and the material in this volume covers all recent developments in this vibrant area that combines partial differential equations with differential geometry.


Lectures on the Ricci Flow

Lectures on the Ricci Flow

Author: Peter Topping

Publisher: Cambridge University Press

Published: 2006-10-12

Total Pages: 124

ISBN-13: 0521689473

DOWNLOAD EBOOK

An introduction to Ricci flow suitable for graduate students and research mathematicians.


Calculus of Variations and Geometric Evolution Problems

Calculus of Variations and Geometric Evolution Problems

Author: F. Bethuel

Publisher: Springer

Published: 2006-11-14

Total Pages: 299

ISBN-13: 3540488138

DOWNLOAD EBOOK

The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.


Differential Geometry in the Large

Differential Geometry in the Large

Author: Owen Dearricott

Publisher: Cambridge University Press

Published: 2020-10-22

Total Pages: 402

ISBN-13: 1108879993

DOWNLOAD EBOOK

The 2019 'Australian-German Workshop on Differential Geometry in the Large' represented an extraordinary cross section of topics across differential geometry, geometric analysis and differential topology. The two-week programme featured talks from prominent keynote speakers from across the globe, treating geometric evolution equations, structures on manifolds, non-negative curvature and Alexandrov geometry, and topics in differential topology. A joy to the expert and novice alike, this proceedings volume touches on topics as diverse as Ricci and mean curvature flow, geometric invariant theory, Alexandrov spaces, almost formality, prescribed Ricci curvature, and Kähler and Sasaki geometry.


Global Differential Geometry

Global Differential Geometry

Author: Christian Bär

Publisher: Springer Science & Business Media

Published: 2011-12-18

Total Pages: 520

ISBN-13: 3642228429

DOWNLOAD EBOOK

This volume contains a collection of well-written surveys provided by experts in Global Differential Geometry to give an overview over recent developments in Riemannian Geometry, Geometric Analysis and Symplectic Geometry. The papers are written for graduate students and researchers with a general interest in geometry, who want to get acquainted with the current trends in these central fields of modern mathematics.


A Course in Minimal Surfaces

A Course in Minimal Surfaces

Author: Tobias Holck Colding

Publisher: American Mathematical Society

Published: 2024-01-18

Total Pages: 330

ISBN-13: 1470476401

DOWNLOAD EBOOK

Minimal surfaces date back to Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques developed have played key roles in geometry and partial differential equations. Examples include monotonicity and tangent cone analysis originating in the regularity theory for minimal surfaces, estimates for nonlinear equations based on the maximum principle arising in Bernstein's classical work, and even Lebesgue's definition of the integral that he developed in his thesis on the Plateau problem for minimal surfaces. This book starts with the classical theory of minimal surfaces and ends up with current research topics. Of the various ways of approaching minimal surfaces (from complex analysis, PDE, or geometric measure theory), the authors have chosen to focus on the PDE aspects of the theory. The book also contains some of the applications of minimal surfaces to other fields including low dimensional topology, general relativity, and materials science. The only prerequisites needed for this book are a basic knowledge of Riemannian geometry and some familiarity with the maximum principle.


Minimal Surfaces: Integrable Systems and Visualisation

Minimal Surfaces: Integrable Systems and Visualisation

Author: Tim Hoffmann

Publisher: Springer Nature

Published: 2021-05-06

Total Pages: 280

ISBN-13: 3030685411

DOWNLOAD EBOOK

This book collects original peer-reviewed contributions to the conferences organised by the international research network “Minimal surfaces: Integrable Systems and Visualization” financed by the Leverhulme Trust. The conferences took place in Cork, Granada, Munich and Leicester between 2016 and 2019. Within the theme of the network, the presented articles cover a broad range of topics and explore exciting links between problems related to the mean curvature of surfaces in homogeneous 3-manifolds, like minimal surfaces, CMC surfaces and mean curvature flows, integrable systems and visualisation. Combining research and overview articles by prominent international researchers, the book offers a valuable resource for both researchers and students who are interested in this research area.