Differential Geometry, Differential Equations, and Mathematical Physics

Differential Geometry, Differential Equations, and Mathematical Physics

Author: Maria Ulan

Publisher: Springer Nature

Published: 2021-02-12

Total Pages: 231

ISBN-13: 3030632539

DOWNLOAD EBOOK

This volume presents lectures given at the Wisła 19 Summer School: Differential Geometry, Differential Equations, and Mathematical Physics, which took place from August 19 - 29th, 2019 in Wisła, Poland, and was organized by the Baltic Institute of Mathematics. The lectures were dedicated to symplectic and Poisson geometry, tractor calculus, and the integration of ordinary differential equations, and are included here as lecture notes comprising the first three chapters. Following this, chapters combine theoretical and applied perspectives to explore topics at the intersection of differential geometry, differential equations, and mathematical physics. Specific topics covered include: Parabolic geometry Geometric methods for solving PDEs in physics, mathematical biology, and mathematical finance Darcy and Euler flows of real gases Differential invariants for fluid and gas flow Differential Geometry, Differential Equations, and Mathematical Physics is ideal for graduate students and researchers working in these areas. A basic understanding of differential geometry is assumed.


Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

Published: 1964-01-01

Total Pages: 452

ISBN-13: 9780486659640

DOWNLOAD EBOOK

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.


Mathematical Physics with Partial Differential Equations

Mathematical Physics with Partial Differential Equations

Author: James Kirkwood

Publisher: Academic Press

Published: 2012-01-20

Total Pages: 431

ISBN-13: 0123869110

DOWNLOAD EBOOK

Suitable for advanced undergraduate and beginning graduate students taking a course on mathematical physics, this title presents some of the most important topics and methods of mathematical physics. It contains mathematical derivations and solutions - reinforcing the material through repetition of both the equations and the techniques.


Lecture Notes In Applied Differential Equations Of Mathematical Physics

Lecture Notes In Applied Differential Equations Of Mathematical Physics

Author: Luiz C L Botelho

Publisher: World Scientific

Published: 2008-09-10

Total Pages: 340

ISBN-13: 981447102X

DOWNLOAD EBOOK

Functional analysis is a well-established powerful method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and statistical turbulence. This book presents a unique, modern treatment of solutions to fractional random differential equations in mathematical physics. It follows an analytic approach in applied functional analysis for functional integration in quantum physics and stochastic Langevin-turbulent partial differential equations.


Lecture Notes on Geometrical Aspects of Partial Differential Equations

Lecture Notes on Geometrical Aspects of Partial Differential Equations

Author: Viktor Viktorovich Zharinov

Publisher: World Scientific

Published: 1992

Total Pages: 380

ISBN-13: 9789810207533

DOWNLOAD EBOOK

This book focuses on the properties of nonlinear systems of PDE with geometrical origin and the natural description in the language of infinite-dimensional differential geometry. The treatment is very informal and the theory is illustrated by various examples from mathematical physics. All necessary information about the infinite-dimensional geometry is given in the text.


Lectures on Selected Topics in Mathematical Physics

Lectures on Selected Topics in Mathematical Physics

Author: William A. Schwalm

Publisher: Morgan & Claypool Publishers

Published: 2015-12-31

Total Pages: 67

ISBN-13: 1681742306

DOWNLOAD EBOOK

This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first and second year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.


Mathematical Horizons for Quantum Physics

Mathematical Horizons for Quantum Physics

Author: Huzihiro Araki

Publisher: World Scientific

Published: 2010

Total Pages: 221

ISBN-13: 9814313327

DOWNLOAD EBOOK

Control of the molecular alignment or orientation by laser pulses / Arne Keller -- Quantum computing and devices : A short introduction / Zhigang Zhang, Viswanath Ramakrishna and Goong Chen -- Dynamics of mixed classical-quantum systems, geometric quantization and coherent states / Hans-Rudolf Jauslin and Dominique Sugny -- Quantum memories as open systems / Robert Alicki -- Two mathematical problems in quantum information theory / Alexander S. Holevo -- Dissipatively induced bipartite entanglement / Fabio Benatti -- Scattering in nonrelativistic quantum field theory / Jan Derezinski -- Mathematical theory of atoms and molecules / Volker Bach


Applied Partial Differential Equations

Applied Partial Differential Equations

Author: J. David Logan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 193

ISBN-13: 1468405330

DOWNLOAD EBOOK

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems;' The audience usually consists of stu dents in mathematics, engineering, and the physical sciences. The topics include derivations of some of the standard equations of mathemati cal physics (including the heat equation, the· wave equation, and the Laplace's equation) and methods for solving those equations on bounded and unbounded domains. Methods include eigenfunction expansions or separation of variables, and methods based on Fourier and Laplace transforms. Prerequisites include calculus and a post-calculus differential equations course. There are several excellent texts for this course, so one can legitimately ask why one would wish to write another. A survey of the content of the existing titles shows that their scope is broad and the analysis detailed; and they often exceed five hundred pages in length. These books gen erally have enough material for two, three, or even four semesters. Yet, many undergraduate courses are one-semester courses. The author has often felt that students become a little uncomfortable when an instructor jumps around in a long volume searching for the right topics, or only par tially covers some topics; but they are secure in completely mastering a short, well-defined introduction. This text was written to proVide a brief, one-semester introduction to partial differential equations.


Lecture Notes In Topics In Path Integrals And String Representations

Lecture Notes In Topics In Path Integrals And String Representations

Author: Luiz C L Botelho

Publisher: World Scientific

Published: 2017-02-03

Total Pages: 242

ISBN-13: 9813143487

DOWNLOAD EBOOK

'All are every interesting topics treated with a high level of mathematical sophistication. One of the very useful tricks the author repeatedly resorts to is the introduction of one-parameter families of operators interpolating between two operators which appear naturally in the formalism. From this one-parameter family a differential equation for the determinant (or ratio of determinants) or for correlation functions is derived, which can then be solved. This is a very simple, elegant and powerful technique.'Mathematical Reviews ClippingsFunctional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.


Principles of Differential Equations

Principles of Differential Equations

Author: Nelson G. Markley

Publisher: John Wiley & Sons

Published: 2011-10-14

Total Pages: 354

ISBN-13: 1118031539

DOWNLOAD EBOOK

An accessible, practical introduction to the principles of differential equations The field of differential equations is a keystone of scientific knowledge today, with broad applications in mathematics, engineering, physics, and other scientific fields. Encompassing both basic concepts and advanced results, Principles of Differential Equations is the definitive, hands-on introduction professionals and students need in order to gain a strong knowledge base applicable to the many different subfields of differential equations and dynamical systems. Nelson Markley includes essential background from analysis and linear algebra, in a unified approach to ordinary differential equations that underscores how key theoretical ingredients interconnect. Opening with basic existence and uniqueness results, Principles of Differential Equations systematically illuminates the theory, progressing through linear systems to stable manifolds and bifurcation theory. Other vital topics covered include: Basic dynamical systems concepts Constant coefficients Stability The Poincaré return map Smooth vector fields As a comprehensive resource with complete proofs and more than 200 exercises, Principles of Differential Equations is the ideal self-study reference for professionals, and an effective introduction and tutorial for students.