Graph Representation Learning

Graph Representation Learning

Author: William L. William L. Hamilton

Publisher: Springer Nature

Published: 2022-06-01

Total Pages: 141

ISBN-13: 3031015886

DOWNLOAD EBOOK

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.


Foundations of Biomedical Knowledge Representation

Foundations of Biomedical Knowledge Representation

Author: Arjen Hommersom

Publisher: Springer

Published: 2016-01-07

Total Pages: 336

ISBN-13: 3319280074

DOWNLOAD EBOOK

Medicine and health care are currently faced with a significant rise in their complexity. This is partly due to the progress made during the past three decades in the fundamental biological understanding of the causes of health and disease at the molecular, (sub)cellular, and organ level. Since the end of the 1970s, when knowledge representation and reasoning in the biomedical field became a separate area of research, huge progress has been made in the development of methods and tools that are finally able to impact on the way medicine is being practiced. Even though there are huge differences in the techniques and methods used by biomedical researchers, there is now an increasing tendency to share research results in terms of formal knowledge representation methods, such as ontologies, statistical models, network models, and mathematical models. As there is an urgent need for health-care professionals to make better decisions, computer-based support using this knowledge is now becoming increasingly important. It may also be the only way to integrate research results from the different parts of the spectrum of biomedical and clinical research. The aim of this book is to shed light on developments in knowledge representation at different levels of biomedical application, ranging from human biology to clinical guidelines, and using different techniques, from probability theory and differential equations to logic. The book starts with two introductory chapters followed by 18 contributions organized in the following topical sections: diagnosis of disease; monitoring of health and disease and conformance; assessment of health and personalization; prediction and prognosis of health and disease; treatment of disease; and recommendations.


Handbook of Artificial Intelligence in Biomedical Engineering

Handbook of Artificial Intelligence in Biomedical Engineering

Author: Saravanan Krishnan

Publisher: CRC Press

Published: 2021-03-29

Total Pages: 565

ISBN-13: 1000067637

DOWNLOAD EBOOK

Handbook of Artificial Intelligence in Biomedical Engineering focuses on recent AI technologies and applications that provide some very promising solutions and enhanced technology in the biomedical field. Recent advancements in computational techniques, such as machine learning, Internet of Things (IoT), and big data, accelerate the deployment of biomedical devices in various healthcare applications. This volume explores how artificial intelligence (AI) can be applied to these expert systems by mimicking the human expert’s knowledge in order to predict and monitor the health status in real time. The accuracy of the AI systems is drastically increasing by using machine learning, digitized medical data acquisition, wireless medical data communication, and computing infrastructure AI approaches, helping to solve complex issues in the biomedical industry and playing a vital role in future healthcare applications. The volume takes a multidisciplinary perspective of employing these new applications in biomedical engineering, exploring the combination of engineering principles with biological knowledge that contributes to the development of revolutionary and life-saving concepts.


Inductive Logic Programming

Inductive Logic Programming

Author: Stephen Muggleton

Publisher: Springer Science & Business Media

Published: 2007-07-27

Total Pages: 466

ISBN-13: 3540738460

DOWNLOAD EBOOK

This book constitutes the thoroughly refereed post-proceedings of the 16th International Conference on Inductive Logic Programming, ILP 2006, held in Santiago de Compostela, Spain, in August 2006. The papers address all current topics in inductive logic programming, ranging from theoretical and methodological issues to advanced applications.


Biomedical Data and Applications

Biomedical Data and Applications

Author: Amandeep S. Sidhu

Publisher: Springer Science & Business Media

Published: 2009-06-16

Total Pages: 344

ISBN-13: 3642021921

DOWNLOAD EBOOK

Compared with data from general application domains, modern biological data has many unique characteristics. The goal of this book is to cover data and applications identifying new issues and directions for future research in biomedical domain.


Similarity Search and Applications

Similarity Search and Applications

Author: Nora Reyes

Publisher: Springer Nature

Published: 2021-10-21

Total Pages: 415

ISBN-13: 3030896579

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 14th International Conference on Similarity Search and Applications, SISAP 2021, held in Dortmund, Germany, in September/October 2021. The conference was held virtually due to the COVID-19 pandemic.The 23 full papers presented together with 5 short and 3 doctoral symposium papers were carefully reviewed and selected from 50 submissions. The papers are organized in the topical sections named: ​Similarity Search and Retrieval; Intrinsic Dimensionality; Clustering and Classification; Applications of Similarity Search; Similarity Search in Graph-Structured Data; Doctoral Symposium.


Representation Learning for Natural Language Processing

Representation Learning for Natural Language Processing

Author: Zhiyuan Liu

Publisher: Springer Nature

Published: 2023-08-23

Total Pages: 535

ISBN-13: 9819916003

DOWNLOAD EBOOK

This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, legal domain knowledge and biomedical domain knowledge. Lastly, Part IV discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing. As compared to the first edition, the second edition (1) provides a more detailed introduction to representation learning in Chapter 1; (2) adds four new chapters to introduce pre-trained language models, robust representation learning, legal knowledge representation learning and biomedical knowledge representation learning; (3) updates recent advances in representation learning in all chapters; and (4) corrects some errors in the first edition. The new contents will be approximately 50%+ compared to the first edition. This is an open access book.


Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction

Knowledge Graph and Semantic Computing: Knowledge Graph Empowers New Infrastructure Construction

Author: Bing Qin

Publisher: Springer Nature

Published: 2021-10-28

Total Pages: 339

ISBN-13: 9811664714

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 6th China Conference on Knowledge Graph and Semantic Computing, CCKS 2021, held in Guangzhou, China, in November 2021. The 19 revised full papers and 9 short papers presented were carefully reviewed and selected from 170 submissions. The papers are organized in topical sections on ​knowledge extraction: knowledge graph representation and reasoning; knowledge acquisition and knowledge graph construction; linked data, knowledge integration, and knowledge graph storage management; natural language understanding and semantic computing; knowledge graph applications: semantic search, question answering, dialogue, decision support, and recommendation; knowledge graph open resources.