Lateral-control Investigation of Flap-type Controls on a Wing with Quarter-chord Line Sweptback 35©, Aspect Ratio 4, Taper Ratio 0.6, and NACA 65A006 Airfoil Section

Lateral-control Investigation of Flap-type Controls on a Wing with Quarter-chord Line Sweptback 35©, Aspect Ratio 4, Taper Ratio 0.6, and NACA 65A006 Airfoil Section

Author: Robert F. Thompson

Publisher:

Published: 1950

Total Pages: 28

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of an investigation to determine the control-effectiveness characteristics of 30-percent-chord flap-type control surfaces of various spans on a semispan wing-fuselage model. The wing of the mode had 35 degrees of sweepback of the quarter chord, an aspect ratio of 4.0, a taper ratio of 0.6, and an NACA 65A006 airfoil section parallel to the free stream. Lift, rolling moments, and pitching moments were obtained for several angle of attack throughout a small range of control-surface deflections. Most of the data are presented as control-effectiveness parameters which show their variation with Mach number.


Aerodynamic Characteristics of a Wing with Quarter-chord Line Swept Back 45 Degrees, Aspect Ratio 4, Taper Ratio 0.3, and NACA 65A006 Airfoil Section

Aerodynamic Characteristics of a Wing with Quarter-chord Line Swept Back 45 Degrees, Aspect Ratio 4, Taper Ratio 0.3, and NACA 65A006 Airfoil Section

Author: Boyd C. Myers

Publisher:

Published: 1949

Total Pages: 36

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of the investigation of a wing-alone and wing-fuselage configuration employing a wing with the quarter-chord line swept back 45 degrees, with aspect ratio 4, taper ratio 0.3, and an NACA 65A006 airfoil section. Lift, drag, pitching moment, and root bending moment were obtained for these configurations. In addition, effective downwash angles and dynamic-pressure characteristics in the region of a probable tail location were also obtained for these configurations and are presented for a range of tail heights at one tail length. In order to expedite the publishing of these data, only a brief analysis is included.


Aerodynamic Characteristics of a Delta Wing with Leading Edge Swept Back 45 Degrees, Aspect Ratio 4, and NACA 65A006 Airfoil Section

Aerodynamic Characteristics of a Delta Wing with Leading Edge Swept Back 45 Degrees, Aspect Ratio 4, and NACA 65A006 Airfoil Section

Author: William C. Sleeman

Publisher:

Published: 1949

Total Pages: 34

ISBN-13:

DOWNLOAD EBOOK

This paper presents the results of the investigation of wing-alone and wing-fuselage combination employing a delta wing having 45 degree sweepback of the leading edge, aspect ratio 4, and an NACA 65A006 airfoil section. Lift, drag, pitching moment, and root bending moment were obtained for these configurations. In addition, effective downwash angles and dynamic-pressure characteristics in the region of a probable tail location also were obtained for these configurations, and are presented for a range of tail heights at one tail length. In order to expedite publishing of these data, only a brief analysis is included.


Investigation at Transonic Speeds of Loading Over a 30 Deg Sweptback Wing of Aspect Ratio 3, Taper Ratio 0.2, and NACA 65A004 Airfoil Section Mounted on a Body

Investigation at Transonic Speeds of Loading Over a 30 Deg Sweptback Wing of Aspect Ratio 3, Taper Ratio 0.2, and NACA 65A004 Airfoil Section Mounted on a Body

Author: Donald D. Arabian

Publisher:

Published: 1960

Total Pages: 88

ISBN-13:

DOWNLOAD EBOOK

The aerodynamic load characteristics of a wing-body combination were determined experimentally at Mach numbers from 0.80 to 1.03 for angles of attack up to 26 degrees. Two wings, both with 30 degrees sweep of the quarter-chord line, taper ratio of 0.2, aspect ratio of 3, and thickness of 4 percent chord, but of different types of construction, were tested. One wing was of solid steel and the other was of plastic with an inner steel core ...


Investigation of the Aerodynamic Characteristics in Pitch and Sideslip of a 45© Swept-wing Airplane Configuration with Various Vertical Locations of the Wing and Horizontal Tail

Investigation of the Aerodynamic Characteristics in Pitch and Sideslip of a 45© Swept-wing Airplane Configuration with Various Vertical Locations of the Wing and Horizontal Tail

Author: M. Leroy Spearman

Publisher:

Published: 1957

Total Pages: 34

ISBN-13:

DOWNLOAD EBOOK

An investigation has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel to determine the effects of wing and horizontal-tail vertical location on the aerodynamic characteristics in sideslip at various angles of attack for a supersonic airplane configuration at Mach numbers of 1.41 and 2.01. The basic model was equipped with a wing and horizontal tail, each having 45 degree sweep and an aspect ratio of 4. The wing had a taper ratio of 0.2 and NACA 65A004 sections; the horizontal tail had a taper ratio of 0.4 and NACA 65A006 sections.


Investigation of the Effects of Leading-edge Chord-extensions and Fences in Combination with Leading-edge Flaps on the Aerodynamic Characteristics at Mach Numbers from 0.40 to 0.93 of a 45 Degree Sweptback Wing of Aspect Ratio 4

Investigation of the Effects of Leading-edge Chord-extensions and Fences in Combination with Leading-edge Flaps on the Aerodynamic Characteristics at Mach Numbers from 0.40 to 0.93 of a 45 Degree Sweptback Wing of Aspect Ratio 4

Author: Kenneth P. Spreemann

Publisher:

Published: 1957

Total Pages: 644

ISBN-13:

DOWNLOAD EBOOK

This investigation was made to determine the effects of 6 degree full-span and 3 degree partial-span leading-edge flaps in combination with chord-extensions or fences on the aerodynamic characteristics of a wing-fuselage configuration with a 45 degree sweptback wing of aspect ratio 4, taper ratio 0.3, and NACA 65A006 airfoil sections. The investigation was made in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.40 to 0.93 and an angle-of-attack range of about -2 degrees to 24 degrees. Lift, drag, and pitching-moment data were obtained for all configurations. From overall considerations of stability and performance it appears that with the model of this investigation the 6 degree full-span leading-edge flaps in combination with the chord-extension over the outboard 35 percent of the span, with or without leading-edge camber, would be the most desirable configuration.


Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and NACA 65A004 Airfoil Sections

Investigation at Transonic Speeds of the Loading Over a 45 Degree Sweptback Wing Having an Aspect Ratio of 3, a Taper Ratio of 0.2, and NACA 65A004 Airfoil Sections

Author: Jack F. Runckel

Publisher:

Published: 1956

Total Pages: 104

ISBN-13:

DOWNLOAD EBOOK

An investigation at transonic speeds of the loading over a 45 degree sweptback wing having an aspect ratio of 3, a taper ratio of 0.2, and NACA 65A004 airfoil sections has been conducted in the Langley16-foot transonic tunnel. Pressure measurements on the wing-body combination were obtained at angles of attack from 0 to 26 degrees at Mach numbers from 0.80 to 0.98 and from 0 to about 12 degrees at Mach numbers from 1.00 to 1.05. Reynolds number, based on the wing mean aerodynamic chord, varied from 7,000,000 to 8,500,000 over the test Mach number range.


Transonic Wind-tunnel Investigation of the Effects of Sweepback and Thickness Ratio on the Wing Loads of a Wing-body Combination of Aspect Ratio 4 and Taper Ratio 0.6

Transonic Wind-tunnel Investigation of the Effects of Sweepback and Thickness Ratio on the Wing Loads of a Wing-body Combination of Aspect Ratio 4 and Taper Ratio 0.6

Author: Robert J. Platt

Publisher:

Published: 1955

Total Pages: 50

ISBN-13:

DOWNLOAD EBOOK

A transonic investigation of the effects of sweepback and thickness ratio on the wing loads of a wing in the presence of a body has been made in the Langley 8-foot transonic pressure tunnel. The tests covered wings with a thickness ratio of 6 percent for sweepback angles of 0, 25, and 45 degrees and a thickness ratio of 4 percent for an unswept wing.