Laser Spectroscopy for Sensing

Laser Spectroscopy for Sensing

Author: Matthieu Baudelet

Publisher: Woodhead Publishing

Published: 2019-09-15

Total Pages: 700

ISBN-13: 9780081024843

DOWNLOAD EBOOK

Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing, Second Edition examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. The book provides an overview of laser spectroscopy at three levels: the fundamental aspects to consider when planning use of laser spectroscopy to solve a problem (from the sample properties to the laser properties to the data analysis), the technical aspects of several spectroscopic techniques, and the fields of applications of such techniques. In the new edition, key advancements from the field are captured as well as two new chapters on Raman Spectroscopy and Laser-induced breakdown spectroscopy. Laser Spectroscopy for Sensing provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including Raman spectroscopy and laser-induced breakdown spectroscopy Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry


Laser Spectroscopy for Sensing

Laser Spectroscopy for Sensing

Author: Matthieu Baudelet

Publisher: Elsevier

Published: 2014-02-15

Total Pages: 601

ISBN-13: 085709873X

DOWNLOAD EBOOK

Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. - Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation - Explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media - Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry


Advances in Spectroscopy for Lasers and Sensing

Advances in Spectroscopy for Lasers and Sensing

Author: Baldassare Di Bartolo

Publisher: Springer Science & Business Media

Published: 2006-07-21

Total Pages: 574

ISBN-13: 1402047894

DOWNLOAD EBOOK

This volume presents the Proceedings of "New Development in Optics and Related Fields," held in Italy in June, 2005. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Center for Scientific Culture. The purpose of this Institute was to provide a comprehensive and coherent treatment of the new techniques and contemporary developments in optics and related fields.


Laser Spectroscopy and its Applications

Laser Spectroscopy and its Applications

Author: Richard W. Solarz

Publisher: Routledge

Published: 2017-11-22

Total Pages: 712

ISBN-13: 1351435612

DOWNLOAD EBOOK

Bringing together scattered literature from a range of sources, Laser Spectroscopy and ItsApplications clearly elucidates the tools and concepts of this dynamic area, and providesextensive bibliographies for further study.Distinguished experts in their respective fields discuss resonance photoionization, laser absorption,laser-induced breakdown, photodissociation, Raman scattering, remote sensing,and laser-induced fluorescence. The book also incorporates an overview of the semiclassicaltheory of atomic and molecular spectra.Combining background at an intermediate level with an in-depth discussion of specifictechniques, Laser Spectroscopy and Its Applications is essential reading for laser and opticalscientists and engineers; analytical chemists; health physicists; researchers in optical,chemical, pharmaceutical, and metallurgical industries. It will also prove useful for upperlevelundergraduate and graduate students of laser spectroscopy and its applications, andin-house seminars and short courses offered by firms and professional societies.


Cavity-Enhanced Spectroscopy and Sensing

Cavity-Enhanced Spectroscopy and Sensing

Author: Gianluca Gagliardi

Publisher: Springer

Published: 2013-10-19

Total Pages: 537

ISBN-13: 3642400035

DOWNLOAD EBOOK

The book reviews the dramatic recent advances in the use of optical resonators for high sensitivity and high resolution molecular spectroscopy as well as for chemical, mechanical and physical sensing. It encompasses a variety of cavities including those made of two or more mirrors, optical fiber loops, fiber gratings and spherical cavities. The book focuses on novel techniques and their applications. Each chapter is written by an expert and/or pioneer in the field. These experts also provide the theoretical background in optics and molecular physics where needed. Examples of recent breakthroughs include the use of frequency combs (Nobel prize 2005) for cavity enhanced sensing and spectroscopy, the use of novel cavity materials and geometries, the development of optical heterodyne detection techniques combined to active frequency-locking schemes. These methods allow the use and interrogation of optical resonators with a variety of coherent light sources for trace gas detection and sensing of strain, temperature and pressure.


Laser and Fiber Optic Gas Absorption Spectroscopy

Laser and Fiber Optic Gas Absorption Spectroscopy

Author: George Stewart

Publisher: Cambridge University Press

Published: 2021-04-08

Total Pages: 276

ISBN-13: 131680562X

DOWNLOAD EBOOK

An invaluable text for the teaching, design, and development of gas sensor technology. This excellent resource synthesizes the fundamental principles of spectroscopy, laser physics, and photonics technology and engineering to enable the reader to fully understand the key issues and apply them in the design of optical gas absorption sensors. It provides a straightforward introduction to low-cost and highly versatile near-IR systems, as well as an extensive review of mid-IR systems. Fibre laser systems for spectroscopy are also examined in detail, especially the emerging technique of frequency comb spectroscopy. Featuring many examples of real-world application and performance, as well as MATLAB computer programs for modeling and simulation, this exceptional work is ideal for postgraduate students, researchers, and professional engineers seeking to gain an in-depth understanding of the principles and applications of fibre-optic and laser-based gas sensors.


State-of-the-art Laser Gas Sensing Technologies

State-of-the-art Laser Gas Sensing Technologies

Author: Yufei Ma

Publisher: MDPI

Published: 2020-03-05

Total Pages: 278

ISBN-13: 3039283987

DOWNLOAD EBOOK

Trace gas sensing technologies are widely used in many applications, such as environmental monitoring, life science, medical diagnostics, and planetary exploration. On the one hand, laser sources have developed greatly due to the rapid development of laser media and laser techniques in recent years. Some novel lasers such as solid-state, diode, and quantum cascade lasers have experienced significant progress. At present, laser wavelengths can cover the range from ultraviolet to terahertz, which could promote the development of laser gas sensing technologies significantly. On the other hand, some new gas sensing methods have appeared, such as photothermal spectroscopy and photoacoustic spectroscopy. Laser spectroscopy-based gas sensing techniques have the advantages of high sensitivity, non-invasiveness, and allowing in situ, real-time observation. Due to the rapid and recent developments in laser source as well as the great merits of laser spectroscopy-based gas sensing techniques, this book aims to provide an updated overview of the state-of-the-art laser gas sensing technologies.


Laser-Based Optical Detection of Explosives

Laser-Based Optical Detection of Explosives

Author: Paul M. Pellegrino

Publisher: CRC Press

Published: 2018-09-03

Total Pages: 464

ISBN-13: 1351831178

DOWNLOAD EBOOK

Laser-Based Optical Detection of Explosives offers a comprehensive review of past, present, and emerging laser-based methods for the detection of a variety of explosives. This book: Considers laser propagation safety and explains standard test material preparation for standoff optical-based detection system evaluation Explores explosives detection using deep ultraviolet native fluorescence, Raman spectroscopy, laser-induced breakdown spectroscopy, reflectometry, and hyperspectral imaging Examines photodissociation followed by laser-induced fluorescence, photothermal methods, cavity-enhanced absorption spectrometry, and short-pulse laser-based techniques Describes the detection and recognition of explosives using terahertz-frequency spectroscopic techniques Each chapter is authored by a leading expert on the respective technology, and is structured to supply historical perspective, address current advantages and challenges, and discuss novel research and applications. Readers are left with an in-depth understanding and appreciation of each technology’s capabilities and potential for standoff hazard detection.


Spectroscopy and Optical Diagnostics for Gases

Spectroscopy and Optical Diagnostics for Gases

Author: Ronald K. Hanson

Publisher: Springer

Published: 2015-10-26

Total Pages: 290

ISBN-13: 3319232525

DOWNLOAD EBOOK

This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.


Laser Radar

Laser Radar

Author: National Research Council

Publisher: National Academies Press

Published: 2014-03-14

Total Pages: 321

ISBN-13: 0309302196

DOWNLOAD EBOOK

In today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.