Introduction to Laser Spectroscopy

Introduction to Laser Spectroscopy

Author: Halina Abramczyk

Publisher: Elsevier

Published: 2005-05-06

Total Pages: 331

ISBN-13: 0080455255

DOWNLOAD EBOOK

Introduction to Laser Spectroscopy is a well-written, easy-to-read guide to understanding the fundamentals of lasers, experimental methods of modern laser spectroscopy and applications. It provides a solid grounding in the fundamentals of many aspects of laser physics, nonlinear optics, and molecular spectroscopy. In addition, by comprehensively combining theory and experimental techniques it explicates a variety of issues that are essential to understanding broad areas of physical, chemical and biological science. Topics include key laser types - gas, solid state, and semiconductor - as well as the rapidly evolving field of ultrashort laser phenomena for femtochemistry applications. The examples used are well researched and clearly presented. Introduction to Laser Spectroscopy is strongly recommended to newcomers as well as researchers in physics, engineering, chemistry and biology.* A comprehensive course that combines theory and practice* Includes a systematic and comprehensive description for key laser types* Written for students and professionals looking to gain a thorough understanding of modern laser spectroscopy


Femtosecond Laser Spectroscopy

Femtosecond Laser Spectroscopy

Author: Peter Hannaford

Publisher: Springer Science & Business Media

Published: 2005-12-27

Total Pages: 350

ISBN-13: 038723294X

DOWNLOAD EBOOK

The embryonic development of femtoscience stems from advances made in the generation of ultrashort laser pulses. Beginning with mode-locking of glass lasers in the 1960s, the development of dye lasers brought the pulse width down from picoseconds to femtoseconds. The breakthrough in solid state laser pulse generation provided the current reliable table-top laser systems capable of average power of about 1 watt, and peak power density of easily watts per square centimeter, with pulse widths in the range of four to eight femtoseconds. Pulses with peak power density reaching watts per square centimeter have been achieved in laboratory settings and, more recently, pulses of sub-femtosecond duration have been successfully generated. As concepts and methodologies have evolved over the past two decades, the realm of ultrafast science has become vast and exciting and has impacted many areas of chemistry, biology and physics, and other fields such as materials science, electrical engineering, and optical communication. In molecular science the explosive growth of this research is for fundamental reasons. In femtochemistry and femtobiology chemical bonds form and break on the femtosecond time scale, and on this scale of time we can freeze the transition states at configurations never before seen. Even for n- reactive physical changes one is observing the most elementary of molecular processes. On a time scale shorter than the vibrational and rotational periods the ensemble behaves coherently as a single-molecule trajectory.


Principles of Laser Spectroscopy and Quantum Optics

Principles of Laser Spectroscopy and Quantum Optics

Author: Paul R. Berman

Publisher: Princeton University Press

Published: 2010-12-13

Total Pages: 538

ISBN-13: 1400837049

DOWNLOAD EBOOK

Principles of Laser Spectroscopy and Quantum Optics is an essential textbook for graduate students studying the interaction of optical fields with atoms. It also serves as an ideal reference text for researchers working in the fields of laser spectroscopy and quantum optics. The book provides a rigorous introduction to the prototypical problems of radiation fields interacting with two- and three-level atomic systems. It examines the interaction of radiation with both atomic vapors and condensed matter systems, the density matrix and the Bloch vector, and applications involving linear absorption and saturation spectroscopy. Other topics include hole burning, dark states, slow light, and coherent transient spectroscopy, as well as atom optics and atom interferometry. In the second half of the text, the authors consider applications in which the radiation field is quantized. Topics include spontaneous decay, optical pumping, sub-Doppler laser cooling, the Heisenberg equations of motion for atomic and field operators, and light scattering by atoms in both weak and strong external fields. The concluding chapter offers methods for creating entangled and spin-squeezed states of matter. Instructors can create a one-semester course based on this book by combining the introductory chapters with a selection of the more advanced material. A solutions manual is available to teachers. Rigorous introduction to the interaction of optical fields with atoms Applications include linear and nonlinear spectroscopy, dark states, and slow light Extensive chapter on atom optics and atom interferometry Conclusion explores entangled and spin-squeezed states of matter Solutions manual (available only to teachers)


Laser-Induced Breakdown Spectroscopy

Laser-Induced Breakdown Spectroscopy

Author: Jagdish P. Singh

Publisher: Elsevier

Published: 2020-06-02

Total Pages: 624

ISBN-13: 0128188308

DOWNLOAD EBOOK

Laser-Induced Breakdown Spectroscopy, Second Edition, covers the basic principles and latest developments in instrumentation and applications of Laser Induced Breakdown Spectroscopy (LIBS). Written by active experts in the field, it serves as a useful resource for analytical chemists and spectroscopists, as well as graduate students and researchers engaged in the fields of combustion, environmental science, and planetary and space exploration. This fully revised second edition includes several new chapters on new LIBS techniques as well as several new applications, including flame and off-gas measurement, pharmaceutical samples, defense applications, carbon sequestration and site monitoring, handheld instruments, and more. LIBS has rapidly developed into a major analytical technology with the capability of detecting all chemical elements in a sample, of real- time response, and of close-contact or stand-off analysis of targets. It does not require any sample preparation, unlike conventional spectroscopic analytical techniques. Samples in the form of solids, liquids, gels, gases, plasmas, and biological materials (like teeth, leaves, or blood) can be studied with almost equal ease. This comprehensive reference introduces the topic to readers in a simple, direct, and accessible manner for easy comprehension and maximum utility. - Covers even more applications of LIBS beyond the first edition, including combustion, soil physics, environment, and life sciences - Includes new chapters on LIBS techniques that have emerged in the last several years, including Femtosecond LIBS and Molecular LIBS - Provides inspiration for future developments in this rapidly growing field in the concluding chapter


Introduction to Nonlinear Laser Spectroscopy

Introduction to Nonlinear Laser Spectroscopy

Author: Marc Levenson

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 271

ISBN-13: 0323158447

DOWNLOAD EBOOK

Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates


Foundations of Laser Spectroscopy

Foundations of Laser Spectroscopy

Author: Stig Stenholm

Publisher: Courier Corporation

Published: 2012-09-20

Total Pages: 292

ISBN-13: 0486150372

DOWNLOAD EBOOK

A simple presentation of the theoretical foundations of steady-state laser spectroscopy, this text helps students to apply theory to calculations with a systematic series of examples and exercises. 1984 edition.


Laser Spectroscopy 2

Laser Spectroscopy 2

Author: Wolfgang Demtröder

Publisher: Springer

Published: 2015-01-07

Total Pages: 773

ISBN-13: 3662446413

DOWNLOAD EBOOK

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., ultrafast lasers (atto- and femto-second lasers), coherent matter waves, Doppler-free Fourier spectroscopy, interference spectroscopy, quantum optics and gravitational waves and still more applications in chemical analysis, medical diagnostics, and engineering.


Laser Spectroscopy

Laser Spectroscopy

Author: Wolfgang Demtröder

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 997

ISBN-13: 3662051559

DOWNLOAD EBOOK

Keeping abreast of the latest techniques and applications, this new edition of the standard reference and graduate text on laser spectroscopy has been completely revised and expanded. While the general concept is unchanged, the new edition features a broad array of new material, e.g., frequency doubling in external cavities, reliable cw-parametric oscillators, tunable narrow-band UV sources, more sensitive detection techniques, tunable femtosecond and sub-femtosecond lasers (X-ray region and the attosecond range), control of atomic and molecular excitations, frequency combs able to synchronize independent femtosecond lasers, coherent matter waves, and still more applications in chemical analysis, medical diagnostics, and engineering.


An Introduction to Laser Spectroscopy

An Introduction to Laser Spectroscopy

Author: David L. Andrews

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 382

ISBN-13: 1461507278

DOWNLOAD EBOOK

In the new edition the editors have preserved the basic concept and structure, with the involvement of some new authors - all recognized experts in laser spectroscopy. Each chapter addresses a different technique, providing a review and analysis of the current status, and reporting some of the latest achievements. With the key formulas and methods detailed in many sections, this text represents a practicable handbook of its subject. It will be a valuable tool both for specialists to keep abreast of developments and for newcomers to the field needing an accessible introduction to specific methods of laser spectroscopy - and also as a resource for primary references.