Praise for Introductory Raman Spectroscopy - Highlights basic theory, which is treated in an introductory fashion - Presents state-of-the-art instrumentation - Discusses new applications of Raman spectroscopy in industry and research
This book is intended to provide a fundamental basis for the study of the interaction of polymers with living systems, biochemicals, and with aqueous solutions. The surface chemistry and physics of polymeric materials is a subject not normally covered to any significant extent in classical surface chemistry textbooks. Many of the assumptions of classical surface chemistry are invalid when applied to polymer surfaces. Surface properties of polymers are important in the development of medical devices and diagnostic products. Surface properties are also of vital importance in fields such as adhesion, paints and coatings, polymer-filler interactions, heterogeneous catalysis, composites, and polymers for energy generation. The book begins with a chapter considering the current sources of information on polymer surface chemistry and physics. It moves on to consider the question of the dynamics of polymer surfaces and the implica tions of polymer surface dynamics on all subsequent characterization and interfacial studies. Two chapters are directed toward the question of model polymers for preparing model surfaces and interfaces. Complete treatments of X-ray photoelectron spectroscopy and attenuated total reflection infrared spectroscopy are given. There is a detailed treatment of the contact angle with particular emphasis on contact angle hysteresis in aqueous systems, followed by chapters on interfacial electrochemistry and interface acid-base charge-transfer properties. The very difficult problem of block and graft copolymer surfaces is also discussed. The problem of theoretical calculations of surface and interfacial tensions is presented. Raman spectroscopy is considered as an analytical technique for polymer surface characterization.
The observation of the vibrational spectra of adsorbed species provides one of the most incisive methods for und erst an ding chemical and physical phenomena on surfaces. At the present time, many approaches may be applied to studies of molecular vibrations on surfaces. Some of these are used on high-area solids of technological importance (e.g., heterogeneous catalysts) while others are applied to single-crystal substrates to gain better understanding under conditions of controlled surface structure. This book has attempted to bring together in one place a discussion of the major methods used to measure vibrational spectra of surface species. The emphasis is on basic concepts and experimental methods rather than a current survey of the extensive literature in this field. Two introductory chapters describe the basic theoretical aspects of vibrational spectroscopy on surfaces, dealing with normal modes and excitation mechanisms in vibrational spectroscopy. The remaining seven chapters deal with various methods employed to observe surface vibra tions. These are arranged in an order that first treats the use of various methods on surfaces that are not of the single-crystal type. It is in this area that the field first got started in the late 1940s with pioneering work by Terenin and others in the Soviet Union, and by Eisehens and others in the United States in the 1950s. The last four chapters deal with relatively recent methods that permit vibrational studies to be made on single crystal substrates.
It is now time for a comprehensive treatise to look at the whole field of electrochemistry. The present treatise was conceived in 1974, and the earliest invitations to authors for contributions were made in 1975. The completion of the early volumes has been delayed by various factors. There has been no attempt to make each article emphasize the most recent situation at the expense of an overall statement of the modern view. This treatise is not a collection of articles from Recent Advances in Electrochemistry or Modern Aspects of Electrochemistry. It is an attempt at making a mature statement about the present position in the vast area of what is best looked at as a new interdisciplinary field. Texas A & M University J. O'M. Bockris University of Ottawa B. E. Conway Case Western Reserve University Ernest Yeager Texas A & M University Ralph E. White Preface to Volume 8 Experimental methods in electrochemistry are becoming more diverse. This volume describes many of the new techniques that are being used as well as some of the well-established techniques. It begins with two chapters (1 and 2) on electronic instrumentation and methods for utilization of microcomputers for experimental data acquisition and reduction. Next, two chapters (3 and 4) on classical methods of electrochemical analysis are presented: ion selective electrodes and polarography.
During the last decade there has been an increasing interest in clusters and small particles because of the peculiar proper ties induced by their large area to volume ratio. For that reason small particles are often considered as an intermediate state of matter at the border between atomic (or molecular) chemistry, and physics of the condensed matter. The importance of the surface effect can explain the anomalous properties, for example the exis tence of the five fold symmetry observed in different circumstan ces '(beams of rare gas clusters, gold particles deposited on a substrate). However the question of the critical size at which the transition to bulk properties occurs cannot be simply answered, since the reply depends on the peculiar property which is studied. The importance of the size effect was emphasized in the last International Meetings. However the situation remains confused in most cases since the exact role of the cluster environment cannot be clearly elucidated and is a main difficulty, except in cluster beam experiments. In fact ideally free clusters constitute a labo ratory exception. In most applications small particles must be supported on a surface or embedded in a matrix, in order to be stabilized, which obviously shows the role of the environment.
This volume sets out to draw together the essential expertise which will provide a technical guide to the practice of Raman spectroscopy. The text deals exc1usively with spontaneous Raman spectroscopy and inc1udes some aspects of Resonance Raman spectroscopy. Chapter I sets out the essential theoretical framework using a simple c1assical approach and deals with the rudiments of polarizability. Many of these theoretical points are further developed in Chap. 2 where the scattering and polarization consequences of various sampling geometries and collection optics, on gaseous, liquid, single crystal and thin film methods are detailed. The relative advantages and disadvantages of the wide variety of hardware now available to the Raman spectroscopist are discussed in Chap. 3. Important calibration data is pr. esented in Chap. 4 along with an account of datä analysis techniques, inc1uding signal enhancement methods. Chapter 5 describes some of the techniques and cell designs that have been successfully used to study sampies under extreme conditions and Chap. 6 deals with the rapidly growing technique of Raman microscopy, providing a wide range of application examples and experimental advice. We recognise the difficulty in covering all aspects of Raman spectroscopy in a single volume and a section on further reading, representing what we feel are amongst the more informative references, at the time of publication, is provided for additional detail. Our hope is that Practical Raman Spectroscopy will help to provide a source of on-hand technical support and data for the practising Raman spectroscopist in the laboratory.
High temperature gas-solid reactions are ubiquitous on planetary bodies, distributing chemical elements over a range of geologic settings and temperatures. This volume reviews the critical role gas-solid reactions play in early solar system formation, volcanism, metamorphism and industrial processes. The field evidence, experimental and theoretical approaches for examining gas-solid reaction are presented, building on advances in fields outside of Earth Sciences. Computational chemistry techniques are used to probe the nature of molecular clusters and solvation in volcanic vapors and mineral-gas reaction mechanisms. Specialised analytical methods for characterising solid reaction products are included since these reactions commonly form thin or dispersed films and metastable minerals. Finally, the volume contains rich field examples, laboratory experiments and thermodynamic modelling and kinetics of gas-solid reactions on Earth, Venus and beyond.