Laser Processing and Diagnostics

Laser Processing and Diagnostics

Author: D. Bäuerle

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 561

ISBN-13: 3642823815

DOWNLOAD EBOOK

Laser processing is now a rapidly increasing field with many real and potential applications in different areas of technology such as micromecha nics, metallurgy, integrated optics, and semiconductor device fabrication. The neces s ity for such soph i st i cated 1 i ght sources as 1 asers is based on the spatial coherence and the monochromaticity of laser light. The spatial coherence permits extreme focussing of the laser light resulting in the availability of high energy densities which can be used for strongly loca lized heat- and chemical-treatment of materials, with a resolution down to 1 ess than 1 lJIll. When us i ng pul sed or scanned cw-l asers, 1 oca 1 i zat i on in time is also possible. Additionally, the monochromaticity of laser light allows for control of the depth of heat treatment and/or selective, nonthermal bond breaking - within the surface of the material or within the molecules of the surrounding reactive atmosphere - simply by tuning the laser wavelength. These inherent advantages of laser light permit micromachining of materials (drilling, cutting, welding etc.) and also allow single-step controlled area processing of thin films and surfaces. Processes include structural transformation (removal of residual damage, grain growth in polycrystalline material, amorphization, surface hardening etc.), etching, doping, alloying, or deposition. In addition, laser processing is not 1 imited to planar substrates.


Optical Diagnostics for Flow Processes

Optical Diagnostics for Flow Processes

Author: P. Buchhave

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 387

ISBN-13: 1489912711

DOWNLOAD EBOOK

The origin of optical methods for fluid flow investigations appears to be nontraceable. This is no matter for surprise. After all seeing provides the most direct and common way for humans to learn about their environment. But at the same time some of the most sophisticated methods for doing measurements in fluids are also based on light and often laser light. A very large amount of material has been published in this area over the last two decades. Why then another publication? Well, the field is still in a state of rapid development. It is characterised by the use of results and methods developed within very different areas like optical physics, spectroscopy, communication systems, electronics and computer science, mechanical engineering, chemical engineering and, of course, fluid dynamics. We are not aware of a book containing both introductory and more advanced material that covers the same material as presented here. The book is the result of a compilation and expansion of material presented at a summer school on Optical Diagnosticsfor Flow Processes,held at RiS0 National Laboratory and the Technical University of Denmark in September 1993. The aim of the course was to provide a solid background for understanding, evaluating, and using modem optical diagnostic methods, addressing Ph. D. students and researchers active in areas of fluid flow research. The disciplines represented by the participants ranged from atmospheric fluid dynamics to biomedicine.


Laser Diagnostics for Combustion Temperature and Species

Laser Diagnostics for Combustion Temperature and Species

Author: Alan C. Eckbreth

Publisher: CRC Press

Published: 1996-10-10

Total Pages: 636

ISBN-13: 9789056995324

DOWNLOAD EBOOK

Focusing on spectroscopically-based, spatially-precise, laser techniques for temperature and chemical composition measurements in reacting and non-reacting flows, this book makes these powerful and important new tools in combustion research


Laser Processing and Chemistry

Laser Processing and Chemistry

Author: Dieter Bäuerle

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 649

ISBN-13: 3662032538

DOWNLOAD EBOOK

Laser Processing and Chemistry gives an overview of the fundamentals and applications of laser--matter interactions, in particular with regard to laser material processing. Special attention is given to laser-induced physical and chemical processes at gas--solid, liquid--solid, and solid--solid interfaces. Starting with the background physics, the book proceeds to examine applications of laser techniques in micro-machining, and the patterning, coating, and modification of material surfaces. Students, engineers, and manufacturers alike will find this book an invaluable reference work for the state of the art in laser processing.


Laser-Aided Diagnostics of Plasmas and Gases

Laser-Aided Diagnostics of Plasmas and Gases

Author: K Muraoka

Publisher: CRC Press

Published: 2016-04-19

Total Pages: 307

ISBN-13: 1420034065

DOWNLOAD EBOOK

Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of


Optical Diagnostics for Thin Film Processing

Optical Diagnostics for Thin Film Processing

Author: Irving P. Herman

Publisher: Elsevier

Published: 1996-10-23

Total Pages: 815

ISBN-13: 0080538088

DOWNLOAD EBOOK

This volume describes the increasing role of in situ optical diagnostics in thin film processing for applications ranging from fundamental science studies to process development to control during manufacturing. The key advantage of optical diagnostics in these applications is that they are usually noninvasive and nonintrusive. Optical probes of the surface, film, wafer, and gas above the wafer are described for many processes, including plasma etching, MBE, MOCVD, and rapid thermal processing. For each optical technique, the underlying principles are presented, modes of experimental implementation are described, and applications of the diagnostic in thin film processing are analyzed, with examples drawn from microelectronics and optoelectronics. Special attention is paid to real-time probing of the surface, to the noninvasive measurement of temperature, and to the use of optical probes for process control. Optical Diagnostics for Thin Film Processing is unique. No other volume explores the real-time application of optical techniques in all modes of thin film processing. The text can be used by students and those new to the topic as an introduction and review of the subject. It also serves as a comprehensive resource for engineers, technicians, researchers, and scientists already working in the field. - The only volume that comprehensively explores in situ, real-time, optical probes for all types of thin film processing - Useful as an introduction to the subject or as a resource handbook - Covers a wide range of thin film processes including plasma etching, MBE, MOCVD, and rapid thermal processing - Examples emphasize applications in microelectronics and optoelectronics - Introductory chapter serves as a guide to all optical diagnostics and their applications - Each chapter presents the underlying principles, experimental implementation, and applications for a specific optical diagnostic


Transport in Laser Microfabrication

Transport in Laser Microfabrication

Author: Costas P. Grigoropoulos

Publisher: Cambridge University Press

Published: 2009-07-30

Total Pages: 413

ISBN-13: 052182172X

DOWNLOAD EBOOK

Provides researchers and practitioners with the technical background to understand transport phenomena in laser microfabrication applications.


Lasers in the Preservation of Cultural Heritage

Lasers in the Preservation of Cultural Heritage

Author: Costas Fotakis

Publisher: CRC Press

Published: 2006-10-25

Total Pages: 380

ISBN-13: 9781420012101

DOWNLOAD EBOOK

With the maturation of laser technology in diagnostic and conservation applications, conservation scientists, archeologists, art historians, researchers, and advanced science-oriented students now have the tools necessary for preserving the future of our past-our cultural heritage. Presenting recent developments in the field, Lasers in the Preservation of Cultural Heritage: Principles and Applications addresses the basic concepts of laser applications and supplies case studies of analytical, structural diagnostic, and laser cleaning applications. The book provides a comprehensive presentation of the fundamental principles and applications of modern laser technology in the analysis of composition, diagnostics of structural integrity, and conservation of artworks and antiquities. Beginning with an introduction to the basic techniques used in art conservation and archeology, the book describes the fundamental aspects of laser-matter interactions, emphasizing laser diagnostics and laser processing applications. The next few chapters focus on laser-based spectroscopic techniques for the analysis of the composition of materials in art and archaeology, including laser-induced breakdown, Raman, and laser-induced fluorescence spectroscopic techniques. The book proceeds to highlight nondestructive diagnostic techniques, laser processing applications, laser applications for the cleaning of paintings and stone, and methods for the removal of encrustations. It concludes with case studies for the conservation of materials like parchment, paper, metal, ivory, and wood, and includes conservation approaches for modern paintings. Bridging science with art, Lasers in the Preservation of Cultural Heritage presents a systematic overview of the fundamentals and applications of laser techniques in artwork conservation and archeological science.


Laser Processing: Surface Treatment and Film Deposition

Laser Processing: Surface Treatment and Film Deposition

Author: J. Mazumder

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 937

ISBN-13: 9400901976

DOWNLOAD EBOOK

Synthesis of nonequilibrium metallic phases has been an area of great interest to the materials processing community since early 1960. Inherent rapid cooling rates in laser processing are being used to engineer non-equilibrium microstructures which cannot be rivaled by other processes. This lecture will discuss the phenomena involved and its application in designing materials with tailored properties. What is non-equilibrium Synthesis? This is a synthesis method to produce binary or higher order materials where kinetics of the pro cess affects the transport of the constituent elements during phase transformation resulting in a composition or crystallographic configuration which is different from what is observed when the elements arranges themselves with the lowest possible Gibbs Free energy, which is the equilibrium condition. Figure 1 illustrates the phenomena. Phase diagram under equilibrium condition is illustrated by the solid line whereas the no-equilibrium phase diagram is represented by the dotted line. One can observe the shrinkage of the phase field under non-equilibrium condition. Any alloy composition between the solidus lines of the equilibrium and non-equilibrium phase diagram will be a non equilibrium alloys with extended solid solution.