Laser Cooling and Trapping

Laser Cooling and Trapping

Author: Harold J. Metcalf

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 329

ISBN-13: 146121470X

DOWNLOAD EBOOK

Intended for advanced undergraduates and beginning graduates with some basic knowledge of optics and quantum mechanics, this text begins with a review of the relevant results of quantum mechanics, before turning to the electromagnetic interactions involved in slowing and trapping atoms and ions, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, from atomic clocks and studies of collision processes, to diffraction and interference of atomic beams at optical lattices and Bose-Einstein condensation.


Lévy Statistics and Laser Cooling

Lévy Statistics and Laser Cooling

Author: François Bardou

Publisher: Cambridge University Press

Published: 2002

Total Pages: 218

ISBN-13: 9780521004220

DOWNLOAD EBOOK

Laser cooling of atoms provides an ideal case study for the application of Lévy statistics in a privileged situation where the statistical model can be derived from first principles. This book demonstrates how the most efficient laser cooling techniques can be simply and quantitatively understood in terms of non-ergodic random processes dominated by a few rare events. Lévy statistics are now recognised as the proper tool for analysing many different problems for which standard Gaussian statistics are inadequate. Laser cooling provides a simple example of how Lévy statistics can yield analytic predictions that can be compared to other theoretical approaches and experimental results. The authors of this book are world leaders in the fields of laser cooling and light-atom interactions, and are renowned for their clear presentation. This book will therefore hold much interest for graduate students and researchers in the fields of atomic physics, quantum optics, and statistical physics.


Laser Cooling

Laser Cooling

Author: Galina Nemova

Publisher: CRC Press

Published: 2016-10-26

Total Pages: 477

ISBN-13: 1315341050

DOWNLOAD EBOOK

In the recent decades, laser cooling or optical refrigeration—a physical process by which a system loses its thermal energy as a result of interaction with laser light—has garnered a great deal of scientific interest due to the importance of its applications. Optical solid-state coolers are one such application. They are free from liquids as well as moving parts that generate vibrations and introduce noise to sensors and other devices. They are based on reliable laser diode pump systems. Laser cooling can also be used to mitigate heat generation in high-power lasers. This book compiles and details cutting-edge research in laser cooling done by various scientific teams all over the world that are currently revolutionizing optical refrigerating technology. It includes recent results on laser cooling by redistribution of radiation in dense gas mixtures, three conceptually different approaches to laser cooling of solids such as cooling with anti-Stokes fluorescence, Brillouin cooling, and Raman cooling. It also discusses crystal growth and glass production for laser cooling applications. This book will appeal to anyone involved in laser physics, solid-state physics, low-temperature physics or cryogenics, materials research, development of temperature sensors, or infrared detectors.


Laser Cooling of Solids

Laser Cooling of Solids

Author: S V Petrushkin

Publisher: Elsevier

Published: 2009-10-26

Total Pages: 237

ISBN-13: 1845696832

DOWNLOAD EBOOK

Laser cooling is an important emerging technology in such areas as the cooling of semiconductors. The book examines and suggests solutions for a range of problems in the development of miniature solid-state laser refrigerators, self-cooling solid-state lasers and optical echo-processors. It begins by looking at the basic theory of laser cooling before considering such topics as self-cooling of active elements of solid-state lasers, laser cooling of solid-state information media of optical echo-processors, and problems of cooling solid-state quantum processors.Laser Cooling of Solids is an important contribution to the development of compact laser-powered cryogenic refrigerators, both for the academic community and those in the microelectronics and other industries. Provides a timely review of this promising field of research and discusses the fundamentals and theory of laser cooling Particular attention is given to the physics of cooling processes and the mathematical description of these processes Reviews previous experimental investigations in laser cooling and presents progress towards key potential applications


Optical Refrigeration

Optical Refrigeration

Author: Richard I. Epstein

Publisher: John Wiley & Sons

Published: 2010-12-13

Total Pages: 258

ISBN-13: 3527628053

DOWNLOAD EBOOK

Edited by the two top experts in the field with a panel of International contributors, this is a comprehensive up-to-date review of research and applications. Starting with the basic physical principles of laser cooling of solids, the monograph goes on to discuss the current theoretical issues being resolved and the increasing demands of growth and evaluation of high purity materials suitable for optical refrigeration, while also examining the design and applications of practical cryocoolers. An advanced text for scientists, researchers, engineers, and students (masters, PHDs and Postdoc) in laser and optical material science, and cryogenics.


Laser Cooling

Laser Cooling

Author: Galina Nemova

Publisher: CRC Press

Published: 2016-10-26

Total Pages: 478

ISBN-13: 9814745057

DOWNLOAD EBOOK

In the recent decades, laser cooling or optical refrigeration—a physical process by which a system loses its thermal energy as a result of interaction with laser light—has garnered a great deal of scientific interest due to the importance of its applications. Optical solid-state coolers are one such application. They are free from liquids as well as moving parts that generate vibrations and introduce noise to sensors and other devices. They are based on reliable laser diode pump systems. Laser cooling can also be used to mitigate heat generation in high-power lasers. This book compiles and details cutting-edge research in laser cooling done by various scientific teams all over the world that are currently revolutionizing optical refrigerating technology. It includes recent results on laser cooling by redistribution of radiation in dense gas mixtures, three conceptually different approaches to laser cooling of solids such as cooling with anti-Stokes fluorescence, Brillouin cooling, and Raman cooling. It also discusses crystal growth and glass production for laser cooling applications. This book will appeal to anyone involved in laser physics, solid-state physics, low-temperature physics or cryogenics, materials research, development of temperature sensors, or infrared detectors.


Field Guide to Laser Cooling Methods

Field Guide to Laser Cooling Methods

Author: Galina Nemova

Publisher: SPIE-International Society for Optical Engineering

Published: 2020-12-30

Total Pages: 0

ISBN-13: 9781510630574

DOWNLOAD EBOOK

Provides an overview of the basic principles of laser cooling of atoms, ions, nanoparticles, and solids, including Doppler cooling, polarization gradient cooling, different sub-recoil schemes of laser cooling, forced evaporation, laser cooing with anti-Stokes fluorescence, hybrid laser cooling, and Raman and Brillouin cooling.


Absolute Zero and the Conquest of Cold

Absolute Zero and the Conquest of Cold

Author: Tom Shachtman

Publisher: HMH

Published: 2000-12-12

Total Pages: 275

ISBN-13: 0547525958

DOWNLOAD EBOOK

“A lovely, fascinating book, which brings science to life.” —Alan Lightman Combining science, history, and adventure, Tom Shachtman “holds the reader’s attention with the skill of a novelist” as he chronicles the story of humans’ four-centuries-long quest to master the secrets of cold (Scientific American). “A disarming portrait of an exquisite, ferocious, world-ending extreme,” Absolute Zero and the Conquest of Cold demonstrates how temperature science produced astonishing scientific insights and applications that have revolutionized civilization (Kirkus Reviews). It also illustrates how scientific advancement, fueled by fortuitous discoveries and the efforts of determined individuals, has allowed people to adapt to—and change—the environments in which they live and work, shaping man’s very understanding of, and relationship, with the world. This “truly wonderful book” was adapted into an acclaimed documentary underwritten by the National Science Foundation and the Alfred P. Sloan Foundation, directed by British Emmy Award winner David Dugan, and aired on the BBC and PBS’s Nova in 2008 (Library Journal). “An absorbing account to chill out with.” —Booklist


Laser Cooling

Laser Cooling

Author: Galina Nemova

Publisher: Jenny Stanford Publishing

Published: 2016-09-02

Total Pages: 478

ISBN-13: 9789814745048

DOWNLOAD EBOOK

In the recent decades, laser cooling or optical refrigeration--a physical process by which a system loses its thermal energy as a result of interaction with laser light--has garnered a great deal of scientific interest due to the importance of its applications. Optical solid-state coolers are one such application. They are free from liquids as well as moving parts that generate vibrations and introduce noise to sensors and other devices. They are based on reliable laser diode pump systems. Laser cooling can also be used to mitigate heat generation in high-power lasers. This book compiles and details cutting-edge research in laser cooling done by various scientific teams all over the world that are currently revolutionizing optical refrigerating technology. It includes recent results on laser cooling by redistribution of radiation in dense gas mixtures, three conceptually different approaches to laser cooling of solids such as cooling with anti-Stokes fluorescence, Brillouin cooling, and Raman cooling. It also discusses crystal growth and glass production for laser cooling applications. This book will appeal to anyone involved in laser physics, solid-state physics, low-temperature physics or cryogenics, materials research, development of temperature sensors, or infrared detectors.