Mathematical Thinking and Quantitative Reasoning

Mathematical Thinking and Quantitative Reasoning

Author: Richard N. Aufmann

Publisher: Cengage Learning

Published: 2007-01-12

Total Pages: 832

ISBN-13: 9780618777372

DOWNLOAD EBOOK

Designed for the non-traditional Liberal Arts course, Mathematical Thinking and Quantitative Reasoning focuses on practical topics that students need to learn in order to be better quantitative thinkers and decision-makers. The author team’s approach emphasizes collaborative learning and critical thinking while presenting problem solving in purposeful and meaningful contexts. While this text is more concise than the author team’s Mathematical Excursions (© 2007), it contains many of the same features and learning techniques, such as the proven Aufmann Interactive Method. An extensive technology package provides instructors and students with a comprehensive set of support tools. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.


Integral, Measure and Derivative

Integral, Measure and Derivative

Author: G. E. Shilov

Publisher: Courier Corporation

Published: 2013-05-13

Total Pages: 258

ISBN-13: 0486165612

DOWNLOAD EBOOK

This treatment examines the general theory of the integral, Lebesque integral in n-space, the Riemann-Stieltjes integral, and more. "The exposition is fresh and sophisticated, and will engage the interest of accomplished mathematicians." — Sci-Tech Book News. 1966 edition.


Handbook of Linear Algebra, Second Edition

Handbook of Linear Algebra, Second Edition

Author: Leslie Hogben

Publisher: CRC Press

Published: 2013-11-26

Total Pages: 1906

ISBN-13: 1466507284

DOWNLOAD EBOOK

With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations of quivers, and spectral sets New chapters on combinatorial matrix theory topics, such as tournaments, the minimum rank problem, and spectral graph theory, as well as numerical linear algebra topics, including algorithms for structured matrix computations, stability of structured matrix computations, and nonlinear eigenvalue problems More chapters on applications of linear algebra, including epidemiology and quantum error correction New chapter on using the free and open source software system Sage for linear algebra Additional sections in the chapters on sign pattern matrices and applications to geometry Conjectures and open problems in most chapters on advanced topics Highly praised as a valuable resource for anyone who uses linear algebra, the first edition covered virtually all aspects of linear algebra and its applications. This edition continues to encompass the fundamentals of linear algebra, combinatorial and numerical linear algebra, and applications of linear algebra to various disciplines while also covering up-to-date software packages for linear algebra computations.