Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Both Structured and Unstructured Grids

Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Both Structured and Unstructured Grids

Author:

Publisher:

Published: 1998

Total Pages: 48

ISBN-13:

DOWNLOAD EBOOK

This report describes the application of Large Eddy Simulations (LES) to turbulent flow over an airfoil. Two different approaches have been used, a second-order finite-difference solver on structured grid and a finite-element solver on unstructured grid. Results are presented for the flow around a NACA 4412 airfoil at maximum lift. The diversity of flow characteristics encountered in this flow include laminar, transitional and turbulent boundary layers, flow separation, unstable free shear layers and a wake. while Reynolds-averaged Navier-Stokes simulations (RANS) have had some success when tuned to flows dominated by one such flow characteristic, this variety of flow features taxes the presently available RANS models and presents an excellent opportunity to validate the utility of the dynamic SGS model for LES. Work has also been conducted on high order methods, both for the unstructured and the structured approach.


Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Unstructured Grids

Large Eddy Simulation of Turbulent Flow Over an Airfoil Using Unstructured Grids

Author: Kenneth E. Jansen

Publisher:

Published: 1999

Total Pages: 20

ISBN-13:

DOWNLOAD EBOOK

Many flows of aeronautical interest have regions where turbulence has a significant effect. For many of these flows, Reynolds-averaged Navier-Stokes simulation (RANSS) techniques do not give an acceptable description of the flow. In these cases a more detailed simulation of the turbulence is required. One such detailed simulation technique, large-eddy simulation (LES) has matured to the point of application to complex flows. Historically, LES have been carried out with structured grids which suffer from two major difficulties: the extension to higher Reynolds numbers leads to an impractical number of grid points, and most real world flows are rather difficult to represent geometrically with structured grids. Unstructured-grid methods offer a release from both of these constraints. Within this sponsored research significant progress has been made towards the application of the above approach to flows of aeronautical interest.


Direct and Large-Eddy Simulation XI

Direct and Large-Eddy Simulation XI

Author: Maria Vittoria Salvetti

Publisher: Springer

Published: 2019-02-02

Total Pages: 562

ISBN-13: 3030049159

DOWNLOAD EBOOK

This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.


Direct and Large-Eddy Simulation IV

Direct and Large-Eddy Simulation IV

Author: Bernard Geurts

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 543

ISBN-13: 9401712638

DOWNLOAD EBOOK

This volume contains the proceedings of the 2001 DLES4 workshop. It describes and discusses state-of-the-art modeling and simulation approaches for complex flows. Fundamental turbulence and modeling issues but also elements from modern numerical analysis are at the heart of this field of interest.


Large-Eddy Simulations of Turbulence

Large-Eddy Simulations of Turbulence

Author: M. Lesieur

Publisher: Cambridge University Press

Published: 2005-08-22

Total Pages: 240

ISBN-13: 9780521781244

DOWNLOAD EBOOK

Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.


Direct and Large-Eddy Simulation I

Direct and Large-Eddy Simulation I

Author: Peter R. Voke

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 438

ISBN-13: 940111000X

DOWNLOAD EBOOK

It is a truism that turbulence is an unsolved problem, whether in scientific, engin eering or geophysical terms. It is strange that this remains largely the case even though we now know how to solve directly, with the help of sufficiently large and powerful computers, accurate approximations to the equations that govern tur bulent flows. The problem lies not with our numerical approximations but with the size of the computational task and the complexity of the solutions we gen erate, which match the complexity of real turbulence precisely in so far as the computations mimic the real flows. The fact that we can now solve some turbu lence in this limited sense is nevertheless an enormous step towards the goal of full understanding. Direct and large-eddy simulations are these numerical solutions of turbulence. They reproduce with remarkable fidelity the statistical, structural and dynamical properties of physical turbulent and transitional flows, though since the simula tions are necessarily time-dependent and three-dimensional they demand the most advanced computer resources at our disposal. The numerical techniques vary from accurate spectral methods and high-order finite differences to simple finite-volume algorithms derived on the principle of embedding fundamental conservation prop erties in the numerical operations. Genuine direct simulations resolve all the fluid motions fully, and require the highest practical accuracy in their numerical and temporal discretisation. Such simulations have the virtue of great fidelity when carried out carefully, and repre sent a most powerful tool for investigating the processes of transition to turbulence.


Large Eddy Simulation for Compressible Flows

Large Eddy Simulation for Compressible Flows

Author: Eric Garnier

Publisher: Springer Science & Business Media

Published: 2009-08-11

Total Pages: 280

ISBN-13: 9048128196

DOWNLOAD EBOOK

This book addresses both the fundamentals and the practical industrial applications of Large Eddy Simulation (LES) in order to bridge the gap between LES research and the growing need to use it in engineering modeling.