This volume presents selected peer-reviewed, revised and extended research articles written by prominent researchers who participated in the World Congress on Engineering 2015, held in London, UK, 1-3 July, 2015. This large international conference covered advances in engineering technologies and the physical sciences, with contributions on subjects including mechanical engineering, bioengineering, internet engineering, image engineering, wireless networks, knowledge engineering, manufacturing engineering, and industrial applications. This book offers a snapshot of the state-of-the-art, highlighting tremendous advances in engineering technologies and physical sciences and their applications, and will serve as an excellent reference for researchers and graduate students working in many different disciplines of physical sciences and engineering.
Modern industry imposes ever increasing requirements upon tools and tool materials as to the provision for performance under the conditions of high cutting speeds and dynamic loads as well as under intensive thermal and chemical interactions with workpiece materials. The industry demands a higher productivity in combination with the accuracy of geometry and dimensions of workpieces and quality of working surfaces of the machined pieces. These requirements are best met by the tool superhard materials (diamond and diamond-like cubic boron nitride). Ceramics based on silicon carbide, aluminum and boron oxides as well as on titanium, silicon and aluminum nitrides offer promise as tool materials. Tungsten-containing cemented carbides are still considered as suitable tool materials. Hi- hardness and high strength composites based on the above materials fit all the requirements imposed by machining jobs when manufacturing elements of machinery, in particular those operating under the extreme conditions of high temperatures and loads. These elements are produced of difficult-- machine high-alloy steels, nickel refractory alloys, high-tech ceramics, materials with metallic and non-metallic coatings having improved wear resistance, as well as of special polymeric and glass-ceramic materials. Materials science at high pressure deals with the use of high-pressure techniques for the development and production of unique materials whose preparation at ambient pressure is impossible (e. g. , diamond, cubic boron nitride, etc. ) or of materials with properties exceeding those of materials produced at ambient pressure (e. g. , high-temperature superconductors).
In many instances of mechanical interaction between two materials, the physical contact affects only the outermost surface layer, with little discernible influence on the bulk of the material. The resultant high pressures in these localised regimes can induce surface structural changes such as deformation, phase transformation and amorphization.
The new edition includes additional analytical methods in the classical theory of viscoelasticity. This leads to a new theory of finite linear viscoelasticity of incompressible isotropic materials. Anisotropic viscoplasticity is completely reformulated and extended to a general constitutive theory that covers crystal plasticity as a special case.
This book shows impressively how complex mathematical modeling of materials can be applied to technological problems. Top-class researchers present the theoretical approaches in modern mechanics and apply them to real-world problems in solid mechanics, creep, plasticity, fracture, impact, and friction. They show how they can be applied to technological challenges in various fields like aerospace technology, biological sciences and modern engineering materials.
This collection is organized around the central theme of “Martensite by Design.” Contributions include design, microstructure, properties, advanced processing and manufacturing, performance, phase transformations, and characterization.
This work focuses on computational methods in continuum thermomechanics. The text is based on the author's lectures, which ensures a didactical and coherent buildup. The main emphasis is put on the presentation of ideas and qualitative considerations, illustrated by specific examples and applications. Conditions and explanations that are essential for the practical application of methods are discussed thoroughly.