Theory of Plasticity and Limit Design of Plates

Theory of Plasticity and Limit Design of Plates

Author: Z. Sobotka

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 657

ISBN-13: 1483291790

DOWNLOAD EBOOK

An extensive review of the theory of plasticity, limit design and limit analysis of plates is contained in this volume. Detailed descriptions are given on the plastic behaviour of homogeneous, reinforced and sandwich plates, and on the rise of various yield-line patterns. The volume differs from other books on the plastic analysis of plates by its comprehensive treatment of: the theory of yield fans connected with yield-line planning; the plastic behaviour of plates under combined loadings characterized by the load factors; statical solutions; and continuous, rectangular and skew plates.Before discussing the upper-bound solutions for various types of ultimate loads acting on isotropic, orthotropic and anisotropic plates, the kinematic conditions of the plastic behaviour of plates and the principles and methods of the yield-line theory are examined in detail. Generalized yield conditions of the second degree for orthotropic and anisotropic plates are introduced. Special attention is paid to the rise of yield fans. The concept of yield line planning is also discussed, which may be of practical interest since it indicates the possibilities for preventing the rise of yield fans. Upper-bound and lower-bound solutions for the ultimate uniform load, concentrated loads, triangular and trapexoidal loads, are presented. Similar solutions are provided for continuous loads bounded by various plane and curved surfaces and for various combinations of loads acting on rectangular, polygonal, circular, elliptic and skew plates. Solutions are given for plates on hinged supports, on free supports with elevating corners, on point supports and also for plates with built-in edges. Numerical tables are provided for determining the ultimate loads, bearing moments needed for the given load systems and the parameters of yield-line patterns. The procedures detailed in the volume will prove an indispensable reference source in the practical design of roof, ceiling and bridge slabs.


Bridge Collapse Frequencies versus Failure Probabilities

Bridge Collapse Frequencies versus Failure Probabilities

Author: Dirk Proske

Publisher: Springer

Published: 2018-02-22

Total Pages: 129

ISBN-13: 331973833X

DOWNLOAD EBOOK

This monograph provides a comparative study between failure probabilities and collapse frequencies in structural bridge engineering. The author presents techniques to resolve and extend the limitations of both parameters, taking also into account the time dependency of both parameters. The book includes available data and case studies and thus presents patterns to identify potential weaknesses and challenges in bridge maintenance. The target audience primarily comprises practicing engineers in the field of bridge engineering, but the book may also be beneficial for academic researchers alike.


Elements of Spatial Structures

Elements of Spatial Structures

Author: M. Y. H. Bangash

Publisher: Thomas Telford

Published: 2003

Total Pages: 680

ISBN-13: 9780727731494

DOWNLOAD EBOOK

This excellent text highlights all aspects of the analysis and design of elements related to spatial structures, which have been carefully selected from existing structures. Analysing the design of elements of any full scale structure that contains facilities that have already been constructed makes good economic sense and avoids duplication in respect of research and development, the decision-making process and accurate design criteria for new constructed facilities.


Safety of historical stone arch bridges

Safety of historical stone arch bridges

Author: Dirk Proske

Publisher: Springer Science & Business Media

Published: 2009-09-18

Total Pages: 372

ISBN-13: 3540776184

DOWNLOAD EBOOK

Historical stone arch bridges are still a major part of the infrastructure in many countries. Although this type of bridge has proven to be an efficient construction type, it often poses the problem of insufficient numerical models of the load bearing behavior. Therefore the book introduces methods to adapt life loads and introduces different types of numerical models of the load resistance respectively. The book continues with the introduction of specific damages and strengthening techniques. The book particularly focuses on the probabilistic safety assessment of historical arch bridges, for which often only limited material and structural data is available.