An Introduction to Kolmogorov Complexity and Its Applications

An Introduction to Kolmogorov Complexity and Its Applications

Author: Ming Li

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 655

ISBN-13: 1475726066

DOWNLOAD EBOOK

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).


Kolmogorov Complexity and Computational Complexity

Kolmogorov Complexity and Computational Complexity

Author: Osamu Watanabe

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 111

ISBN-13: 364277735X

DOWNLOAD EBOOK

The mathematical theory of computation has given rise to two important ap proaches to the informal notion of "complexity": Kolmogorov complexity, usu ally a complexity measure for a single object such as a string, a sequence etc., measures the amount of information necessary to describe the object. Compu tational complexity, usually a complexity measure for a set of objects, measures the compuational resources necessary to recognize or produce elements of the set. The relation between these two complexity measures has been considered for more than two decades, and may interesting and deep observations have been obtained. In March 1990, the Symposium on Theory and Application of Minimal Length Encoding was held at Stanford University as a part of the AAAI 1990 Spring Symposium Series. Some sessions of the symposium were dedicated to Kolmogorov complexity and its relations to the computational complexity the ory, and excellent expository talks were given there. Feeling that, due to the importance of the material, some way should be found to share these talks with researchers in the computer science community, I asked the speakers of those sessions to write survey papers based on their talks in the symposium. In response, five speakers from the sessions contributed the papers which appear in this book.


Kolmogorov Complexity and Algorithmic Randomness

Kolmogorov Complexity and Algorithmic Randomness

Author: A. Shen

Publisher: American Mathematical Soc.

Published: 2017-11-02

Total Pages: 534

ISBN-13: 1470431823

DOWNLOAD EBOOK

Looking at a sequence of zeros and ones, we often feel that it is not random, that is, it is not plausible as an outcome of fair coin tossing. Why? The answer is provided by algorithmic information theory: because the sequence is compressible, that is, it has small complexity or, equivalently, can be produced by a short program. This idea, going back to Solomonoff, Kolmogorov, Chaitin, Levin, and others, is now the starting point of algorithmic information theory. The first part of this book is a textbook-style exposition of the basic notions of complexity and randomness; the second part covers some recent work done by participants of the “Kolmogorov seminar” in Moscow (started by Kolmogorov himself in the 1980s) and their colleagues. This book contains numerous exercises (embedded in the text) that will help readers to grasp the material.


Computational Complexity

Computational Complexity

Author: Sanjeev Arora

Publisher: Cambridge University Press

Published: 2009-04-20

Total Pages: 609

ISBN-13: 0521424267

DOWNLOAD EBOOK

New and classical results in computational complexity, including interactive proofs, PCP, derandomization, and quantum computation. Ideal for graduate students.


Algorithmic Randomness and Complexity

Algorithmic Randomness and Complexity

Author: Rodney G. Downey

Publisher: Springer Science & Business Media

Published: 2010-10-29

Total Pages: 883

ISBN-13: 0387684417

DOWNLOAD EBOOK

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.


Complexity and Information

Complexity and Information

Author: J. F. Traub

Publisher: Cambridge University Press

Published: 1998-12-10

Total Pages: 152

ISBN-13: 9780521485067

DOWNLOAD EBOOK

The twin themes of computational complexity and information pervade this 1998 book. It starts with an introduction to the computational complexity of continuous mathematical models, that is, information-based complexity. This is then used to illustrate a variety of topics, including breaking the curse of dimensionality, complexity of path integration, solvability of ill-posed problems, the value of information in computation, assigning values to mathematical hypotheses, and new, improved methods for mathematical finance. The style is informal, and the goals are exposition, insight and motivation. A comprehensive bibliography is provided, to which readers are referred for precise statements of results and their proofs. As the first introductory book on the subject it will be invaluable as a guide to the area for the many students and researchers whose disciplines, ranging from physics to finance, are influenced by the computational complexity of continuous problems.


Meta Math!

Meta Math!

Author: Gregory Chaitin

Publisher: Vintage

Published: 2006-11-14

Total Pages: 242

ISBN-13: 1400077974

DOWNLOAD EBOOK

Gregory Chaitin, one of the world’s foremost mathematicians, leads us on a spellbinding journey, illuminating the process by which he arrived at his groundbreaking theory. Chaitin’s revolutionary discovery, the Omega number, is an exquisitely complex representation of unknowability in mathematics. His investigations shed light on what we can ultimately know about the universe and the very nature of life. In an infectious and enthusiastic narrative, Chaitin delineates the specific intellectual and intuitive steps he took toward the discovery. He takes us to the very frontiers of scientific thinking, and helps us to appreciate the art—and the sheer beauty—in the science of math.


Computability and Complexity

Computability and Complexity

Author: Neil D. Jones

Publisher: MIT Press

Published: 1997

Total Pages: 494

ISBN-13: 9780262100649

DOWNLOAD EBOOK

Computability and complexity theory should be of central concern to practitioners as well as theorists. Unfortunately, however, the field is known for its impenetrability. Neil Jones's goal as an educator and author is to build a bridge between computability and complexity theory and other areas of computer science, especially programming. In a shift away from the Turing machine- and G�del number-oriented classical approaches, Jones uses concepts familiar from programming languages to make computability and complexity more accessible to computer scientists and more applicable to practical programming problems. According to Jones, the fields of computability and complexity theory, as well as programming languages and semantics, have a great deal to offer each other. Computability and complexity theory have a breadth, depth, and generality not often seen in programming languages. The programming language community, meanwhile, has a firm grasp of algorithm design, presentation, and implementation. In addition, programming languages sometimes provide computational models that are more realistic in certain crucial aspects than traditional models. New results in the book include a proof that constant time factors do matter for its programming-oriented model of computation. (In contrast, Turing machines have a counterintuitive "constant speedup" property: that almost any program can be made to run faster, by any amount. Its proof involves techniques irrelevant to practice.) Further results include simple characterizations in programming terms of the central complexity classes PTIME and LOGSPACE, and a new approach to complete problems for NLOGSPACE, PTIME, NPTIME, and PSPACE, uniformly based on Boolean programs. Foundations of Computing series


P, NP, and NP-Completeness

P, NP, and NP-Completeness

Author: Oded Goldreich

Publisher: Cambridge University Press

Published: 2010-08-16

Total Pages:

ISBN-13: 1139490095

DOWNLOAD EBOOK

The focus of this book is the P versus NP Question and the theory of NP-completeness. It also provides adequate preliminaries regarding computational problems and computational models. The P versus NP Question asks whether or not finding solutions is harder than checking the correctness of solutions. An alternative formulation asks whether or not discovering proofs is harder than verifying their correctness. It is widely believed that the answer to these equivalent formulations is positive, and this is captured by saying that P is different from NP. Although the P versus NP Question remains unresolved, the theory of NP-completeness offers evidence for the intractability of specific problems in NP by showing that they are universal for the entire class. Amazingly enough, NP-complete problems exist, and furthermore hundreds of natural computational problems arising in many different areas of mathematics and science are NP-complete.


Introduction to the Theory of Complexity

Introduction to the Theory of Complexity

Author: Daniel Pierre Bovet

Publisher: Prentice Hall PTR

Published: 1994

Total Pages: 304

ISBN-13:

DOWNLOAD EBOOK

Using a balanced approach that is partly algorithmic and partly structuralist, this book systematically reviews the most significant results obtained in the study of computational complexity theory. Features over 120 worked examples, over 200 problems, and 400 figures.